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Abstract
 Mesenchymal stromal cells (MSCs) are multipotent progenitor cells that can 
be isolated and expanded from various sources. MSCs modulate the function of immune 
cells, including T and B lymphocytes, dendritic cells, and natural killer cells. An un-
derstanding of the interaction between MSCs and the inflammatory microenvironment 
will provide critical information in revealing the precise in vivo mechanisms involved 
in MSCs-mediated therapeutic effects, and for designing more practical protocols for 
the clinical use of these cells. In this review we describe the current knowledge of the 
unique biological properties of MSCs, the immunosuppressive effects on immune-com-
petent cells and the paracrine role of soluble factors. A summary of the participation of 
MSCs in preclinical and clinical studies in treating autoimmune diseases and other dis-
eases is described. We also discuss the current challenges of their use and their potential 
roles in cell therapies.
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Introduction

 Mesenchymal stromal cells (MSC) were initially dis-
covered by Friedenstein et al. in the mid-1970s as the small 
fraction of heterogeneous cells from the bone marrow that are 
readily isolated[1]. The cells were described as spindle-shaped 
cells which adhere to tissue culture surfaces and rapidly expand 
in culture.
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 During the 1980s the multilineage potential of MSCs 
were described by Piersma et al[2,3] and Pittenger et al.[4] based 
on their ability to differentiate into distinct mesenchymal cell 
lineages, including chondrogenic, adipogenic, osteogenic and 
even myoblast. However, these cells do not meet the specified 
stem cell criteria such as in-vivo demonstrations of long-term 
survival with self-renewal capacity[5]. Therefore, the Internation-
al Society for Cellular Therapy (ISCT) had stated that these fi-
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broblast-like plastic-adherent cells, regardless of the tissue of or-
igin, should be termed “multipotent mesenchymal stromal cells” 
and retain the acronym “MSCs”[6]. Since then, the Mesenchymal 
and Tissue Stem Cell Committee of the International Society of 
Cellular Therapy proposed a minimum set of criteria to define 
MSCs. First, MSCs must be plastic-adherent during culture and 
present a fibroblast-like shape. Second, MSCs must present a 
specific immune phenotype by the expression of surface mol-
ecules CD105, CD73 and CD90, and not CD45, CD34, CD14 
(or CD11b), CD79 alpha (or CD19) or human leukocyte anti-
gen (HLA)-DR molecules. Finally, MSCs must have the in vitro 
capacity for trilineage mesenchymal differentiation. Thus, have 
the potential to differentiate in vitro into osteoblasts, adipocytes 
and chondroblasts[7].
 Although initially isolated from the bone marrow, 
MSCs were subsequently obtained from multiple adult and fetal 
sources, including the skin, muscle, kidney, dental pulp, spleen 
and heart. However, adipose tissue and the umbilical cord, rep-
resent major alternative sources to bone marrow due to the easy 
accessibility with minimal invasive methods[8,9]. 
 In recent years, several studies have extensively inves-
tigated the immunosuppressive potential in vitro and in vivo of 
MSCs[10]. These cells are an extraordinary model for investigat-
ing the biological mechanisms that allow a cellular population to 
generate diverse cell type. Furthermore, they are potential tools 
in cellular therapies for several clinical applications, such as 

those in which the immune response is exacerbated, diabetes[11] 
and graft-versus-host-disease[12].
 Considering the significant advances reported in the 
field, this review addresses the current knowledge of the bio-
logical aspects involved in MSC immune regulatory capacity 
and the clinical focus of these characteristics in the treatment of 
several diseases with an immune component involved. We also 
summarize the preclinical and clinical studies of MSCs and em-
phasize the current knowledge on diseases for which MSC’s are 
a key component of cell therapy procedures. This review culmi-
nates with the current limitations in our understanding that may 
be the impetus for future studies.

MSC’s and the Innate and Adaptive Immune System
 Although the underlying mechanisms of MSC immu-
nomodulation have yet to be elucidated[13], they are likely me-
diated by the secretion of soluble factors and cell contact-de-
pendent mechanisms in response to immune cells (Figure 1). 
Several studies have shown that MSCs regulate the adaptive and 
innate immune systems by suppression of T cells, generation of 
regulatory T cells, reducing B-cell activation and proliferation, 
maturation of dendritic cells, and inhibiting proliferation and cy-
totoxicity of NK cells[14]. Below, we describe and illustrate the 
immune regulatory effects of MSCs on specific immune cells 
(Figure 1).

Figure 1: Immumodulatory effects of mesenchymal stem cells (MSC) on immune cells.
MSCs inhibit the monocyte differentiation into dendritic cells (DCs), suppress the activation and proliferation from B and Th1, Th2 and Th17 cells, 
induce the activity of T regulatory (Treg) and inhibit the proliferation and cytotoxicity of natural killer(NK) cells and cytotoxic T lymphocytes 
(CTL) cells through cell-cell contact mechanisms and through soluble factors.

Cell to Cell Immunosuppressive Effects
MSCs and T Lymphocytes: T lymphocytes play a central role as the major executor of the adaptive immune system response. 
Their functional properties are central to antigen specificity and memory associated with cognate immunity. In several studies MSCs 
have been shown to have potent anti-inflammatory and immune-modulating properties over T-cell activation, proliferation, dif-
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ferentiation and effector function[15,16]. This immunomodulation 
may be direct or may occur indirectly via modulatory effects on 
antigen-presenting cells such as dendritic cells (DCs), resulting 
in altered cytokine expression and impaired antigen presenta-
tion[17-19].
 During the activation of T lymphocytes, several 
studies have observed that bone marrow derived MSCs (BM-
MSCs) prevent the expression of the early activation markers 
CD25 and CD69 in T cells stimulated with phytohemagglutinin 
(PHA)2[20,21], whereas other studies describe no effect by BM-
MSCs on the expression of these molecules[22,23]. Duffy MM et 
al proposed that such contradictory results may result from dif-
ferences in the population of T cells studied[24].
 The immunosuppressive effects of MSCs on the prolif-
eration of T cells has been confirmed by in vitro and in vivo stud-
ies[25,26]. It has also been shown that it is independent of the ac-
tivation method[27]. However, the direct contact between MSCs 
and T lymphocyte necessary for the inhibition of T-cell prolifer-
ation remains controversial. Some authors have suggested that 
MSCs act via an immunosuppressive mechanism independent of 
cell to cell contact[28]. Whereas others have indicated that contact 
is required for efficient immune regulation[29]. Gao et al have 
recently proposed that in order to provide a pleiotropic immu-
nomodulation that is responsive to different stimulants and that 
targets different immune cells, MSCs are likely to employ both 
direct cell to cell contact and soluble factors that complements 
for diverse and strong immunomodulation[30].
 Once the T cells are activated they can differentiate into 
the well described subsets T helper type 1 cells (Th1), T helper 
type 2 cells (Th2),T helper type 17 cells (Th17), T regulatory 
cells (Treg) and cytotoxic T lymphocytes (CTL) to perform their 
function. The differentiation of Th cells into effector cells de-
pends largely on the cytokine milieu present at the time of anti-
gen presentation and activation. Several studies have suggested 
that MSCs modulate the differentiation, function and balance of 
these subpopulations and foster the development of anti-inflam-
matory immune response.

T helper type 1 cells (Th1): In the presence of IL-1B, IL-27 
and interferon-gamma (IFN-y) CD4+ T cells are differentiated 
into Th1 cells[24]. Once differentiated, Th1 cells activates and re-
cruit macrophages to sites of inflammation through the release 
of IFN-y and TNF[15,31,32]. Th1 also induces immunoglobulin (Ig) 
G2 production by B cells[33]. Examples of dysregulation of Th1 
are Type 1 Diabetes, systemic lupus erythematosus (SLE) and 
inflammatory bowel syndrome[34,35].
 When in contact with MSCs, several in-vitro and in-vivo 
studies have indicated that MSC presents primarily suppressive 
effects on Th1 cells differentiation and effector function[36-38]. 
Madec et al. demonstrated that MSC’s protect non-obese diabet-
ic mice from diabetes by induction of IL-10 producing FOXP3+ 
Treg[39]. In a rat model, Boumaza et al showed that MSCs were 
associated with increased IL-10 and IL-13 expression by Tcells 
with increased frequencies of both CD4+ and CD8+ FOXP3+ T 
cells instead of IFN-y produced by T cells[40]. Duffy et al. con-
cluded that MSCs consistently suppress harmful autoimmune 
Th1 cells responses by predominantly indirect mechanisms, in-
cluding modulation of antigen-presenting DCs and promotion of 
naturally occurring or induced FOXP3-expressing Treg[24]. 
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T helper type 2 cells (Th2): In the presence of IL-4 in addition 
to IL-5, IL-9, IL-10 and IL-13, CD4+ T cells differentiate into 
Th2 cells[15,32]. Th2 play a key role in the host defense against ex-
tracellular parasites, in recruiting eosinophils and by switching 
immunoglobulins into IgG1 and IgE in B cells[15,41]. Examples 
of dysregulated Th2 cell responses are associated with allergic 
diseases such as asthma[42] and rhinitis[43-45]. In the presence of 
allogeneic MSC, a decreased number of infiltrating eosinophils, 
suppression of IgE induction, reduction of IL-4 and IL-13 pro-
duction and increases in IL-10 and CD4+ FOXP3 T cells expres-
sion have been reported in a mouse model of airway inflamma-
tion[44].

T helper type 17 cells (Th17): Th17 cell differentiation occurs 
in the presence of IL-17A in addition to IL17F, IL21 and IL22. 
Th17 is a pro-inflammatory phenotype that provides protection 
against fungi and Gram-negative bacteria via neutrophils recruit-
ment[15,46,47]. Dysfunctions in Th17 have been associated with 
multiple inflammatory disorders, such as rheumatoid arthritis, 
multiple sclerosis and Crohn disease[13]. The Interaction of Th17 
with MSCs in an inflammatory milieucauses downregulation of 
Th17 cell-specific factors and upregulation of FOXP3 Treg and 
IL-10 producing cells[24,28]. Furthermore, X Han et al. has recent-
ly presented a novel immunosuppressive concept of IL-17 in the 
presence of MSCs. They suggest that IL-17 enhanced the in vivo 
immunosuppressive effect of MSCs on T cell proliferation in an 
iNOS-dependent manner[49]. 

Cytotoxic T lymphocytes (CTLs): CD8+ CTLs are a type of T 
cell that is primarily activated by antigen-dendritic cells such as 
dendritic cells (DCs). Once activated, CTLs are capable of in-
ducing cell death through cell-to-cell encounter and by the secre-
tion of cytotoxic granules. These functions allow CTLs to play a 
potent role against virus-infected cells and tumor cells. When in 
contact with MSCs during the primary stimulation phase, MSCs 
inhibit the CTL-associated cell lysis. Whereas, if CTLs are in 
contact at the cytotoxic effector phase, MSCs are unable to sup-
press the cell lysis[29,50-52]. As highlighted in a review by Duffy et 
al.[24], MSCs present both direct and indirect suppressive effects 
on the generation of antigen-specific CTLs and may enhance the 
emergence of CD8+ Treg’s but do not significantly inhibit the 
immune surveillance functions of preexisting CD8+ memory T 
cells.

Regulatory T cells (Treg): Treg is a subtype of CD4+ T cell, 
characterized by expression of IL-2 receptors on the surface and 
intracellular transcription factor FOXP3. Treg play an important 
immunosuppressive role in the activation, differentiation and 
effector function of the other Th cell subtypes through the re-
lease of soluble factors and by cell-cell contact[15]. As described 
before, the interaction with MSCs, increases the number and ac-
tivity of Treg and the expression of IL-10 while suppress Th1, 
Th2 and Th17[53-55]. 

MSC and Dendritic Cells: Dendritic Cells (DC) are the most 
important antigen presenting cells specialized in the uptake, 
transport, and presentation of antigens and have the unique ca-
pacity to stimulate naive and memory T cell in the body[56].These 
cells are derived from bone marrow CD34+ cells in vivo or can 
be grown in vitro from monocytes stimulated with granulocyte 



macrophage colony-stimulating factor (GM-CSF) and IL-4[57], 
or from CD34+ hematopoietic progenitors in presence of GM-
CSF and TNFa[58]. DC play a key role in the initiation of primary 
immune response and in tolerance depending on the activation 
and maturation stage of DC[59]. Their main function is to process 
and present antigens to virgin and memory T cells, B lympho-
cytes and NK cells. Exposure to locally produced cytokines or 
microbial components, promote the maturation, characterized 
by upregulation of MHC-II, co-stimulatory molecules CD80 and 
CD86, migration to lymphoid tissue and production of IL 12. 
Otherwise, tolerance is observed when antigens are presented by 
immature or semi-mature DC[60,61].
 MSCs can affect the recruitment, maturation, function 
and homing of DC[62]. Nauta et al. on 2006 showed that hMSC 
were able to significantly reduce monocyte differentiation into 
DCs, by decreasing upregulation of CD80 and CD86, CD1a, 
CD83 CD40, and HLA DR[60]. This inhibition is performed re-
versibly via either intercellular contact or soluble factors (Figure 
1) as monocytes differentiate normally at the removal of MSCs. 
However, MSC do not affect direct LPS-induced maturation 
of DCs in co-cultures[63,64]. Furthermore, mature DC co-culture 
with MSCs show reduced expression of HLA-DR, CD1a, CD83, 
CD80 and CD86 and down-regulation of IL-12 suggesting their 
skew towards an immature status. The decreased production 
of IL-12 is associated with tolerance and anergy of T cells[65]. 
MSCs also cause the LPS-induced mature DC to increase the 
production of interleukin 10 (IL-10) and to decrease the tumor 
necrosis factor a (TNFa) secretion, inducing a more anti-inflam-
matory or tolerant phenotype[65]. 

MSC and natural killer (NK) cells: NK cells are a type of 
lymphocyte critical to the innate immunity response. These cells 
play a key role against viral infections and tumors[66,67]. NK cells 
perform their effector function through the secretion of cyto-
kines, such as IFNy, TNFa, IL-10, and GM-CSF, and possess 
cytokine activity both spontaneous and antibody-dependent. NK 
cells play a pivotal role in the equilibrium of signals transmitted 
by activator and inhibitor receptors that interact with specific 
HLA molecules on target cells[68]. The outcomes of the interac-
tion between MSCs and NK cells depend on the state of NK cell 
activation and/or cytokines present in the milieu. Thus it might 
result in altered cell function and/or survival in either one or the 
other cell type[63,69,70].
 MSCs have been shown to not only affect the pheno-
type and proliferation of IL-15-induced NK cell without induc-
ing cell death, but also the cytotoxic potential and cytotoxicity 
against HLA-class I negative expressing targets and/or HLA-
class I mismatched of NK cells[63,71]. MSCs can inhibit the IL-2 
induced proliferation of resting, inactivated NK cells, through 
the synergistic activity of the soluble factors IDO and PGE2[63,72] 
and other factors such as TGFb, IL-10 and HGF may play addi-
tional roles[73].
 MSCs also had an inhibitory effect on proliferating 
activated NK cells, through the activity of Serine Protease In-
hibitor B9 (SERPINB-9), which is a major defense against gran-
zyme B-mediated lysis and of MCP-1, that inhibits perforin ex-
pression[74]. On the other hand, NK cells can efficiently kill both 
allogeneic and autologous MSCs. The surface expression of low 
levels of HLA class I molecules and the expression of activating 
NK receptor ligand, such as Poliovirus Receptor and MHC class 

I polypeptide-related sequence A, favors the induced NK-medi-
ated lysis of MSCs[63,75].

MSC and B Lymphocytes: B lymphocytes are white blood 
cells involved in humoral immunity components of the adaptive 
immune system. These cells are specialized for antibody pro-
duction. Only a limited number of studies have been published 
regarding the modulatory effects of MSCs on B lymphocytes in 
humans[76]. However, MSCs inhibit the proliferation by arrest of 
cell cycle G0/G1 without inducing apoptosis and their differenti-
ation into plasma cells and subsequent Ig formation as IgG, IgA, 
IgM are diminished[77,78]. Rosado et al demonstrated that cell-
to-cell contact between CD3+ T cells and MSC’s is crucial to 
inhibit B-cell proliferation and antibody secretion[79]. MSCs also 
inhibit the homing molecules CXCR4, CXCR5, CCR7 modify-
ing the chemotactic properties of B-cells[77].

MSC and the Paracrine Role of Soluble Factors
 Several soluble factors produced by MSCs have been 
described as having direct influence in being able to suppress the 
classical proinflammatory markers and shift the immune system 
toward an anti-inflammatory phenotype. Below we describe the 
immunomodulation effects of TGF, HGF, IDO, PGE2, IL-6, IL-
10, NO, HLA-G5, LIF, Gal-1, Gal-3 and Gal-9 in an inflamma-
tory environment. (Figure 1)

Transforming growth factor (TGF)-β1 and hepatocyte 
growth factor (HGF): Transforming growth factor(TGF) - β1 
and hepatocyte growth factor (HGF) are constitutively and syn-
ergistically expressed by MSC[80]. They play an important rolein 
immunomodulation of alloantigen-activated T-lymphocytes. It 
has been shown by Di Nicola et al that neutralizing antibodies 
to HGF and TGF-β restored the proliferative response[81]. HGF 
also induces MSC mobilization and recruitment to damaged tis-
suesin addition to a mitogenic and anti-apoptotic activity in var-
ious epithelial cells and promotes hematopoiesis[82,83]. TGF-β is 
specifically involved in the generation of CD4+ CD25+ Foxp3+ 
Treg and in the decreased proliferation of NK cells[19]. Whereas 
HGF markedly suppressed IFN-γ and TNF-α expression and de-
creased the serum IL-12[83].

Indoleamine-2,3-dioxygenase(IDO): Although not consti-
tutively expressed by MSC’s, Indoleamine-2,3-dioxygenase 
(IDO) can be induced by IFN-γ[84]. IDO is an enzyme that catab-
olizes L-tryptophan along the kynurenine pathway[85], thereby 
depleting an essential amino acid from the local environment. 
Thus tryptophan depletion or,a build-up of kynurenine, inhibits 
allogeneic T cell responses to major histocompatibility complex 
(MHC)-mismatched allografts[86] and to autoantigens in animal 
models of disease[87,88]. IDO also participates in the inhibition 
of maturation and functional activity of DCs, in the decrease of 
proliferation and cytotoxic activity of IL-2-mediated NK cells in 
the inhibition of Th17 differentiation, and in the generation of 
Foxp3+ Tregs[28,89,90].

Prostaglandin E2 (PGE2): PGE2 is a fundamental homeostatic 
factor derived from arachidonic acid, synthesized by cyclooxy-
genases COX1, COX2 and prostaglandin synthetase[91]. Several 
studies have shown the ability of PGE2 to promote the induc-
tion of suppressive IL-10, IL-6 and IL-4; to directly suppress 
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the differentiation of monocytes into DCs, to stimulate the pro-
liferation and cytotoxic activity of IL-2 mediated NK cells and 
to promote the differentiation of Tregs[92-95]. PGE2 also prevents 
the differentiation of naive T cells into pro-inflammatory Th17. 
Thus, PGE2 is an essential homeostatic factor that plays key role 
in MSC-mediated immunomodulation. 

Interleukin-6 (IL-6): Interleukin-6 (IL-6) amplifies the immu-
nosuppressive effects of MSCs and may induce COX2 function 
in the generation of PGE2 and iNOS activity, enhancing the pro-
duction of nitric oxide (NO)[96,97]. Thereby, IL-6 dependent NO, 
and IL-6-dependent PGE2, may act systemically suppressing 
the host immune response through a shift in the Th1/Th2 cell 
balance and locally by inhibiting generation and maturation of 
dendritic cellsand enhancing the generation of Treg cells[60,98,99].

Interleukin-10 (IL-10): Interleukin-10 (IL-10)expression by 
MSCs remains controversial[100,101]; IL – 10 has a known immu-
nomodulatory role in T cells where it promotes the shift Th1/Th2 
balance towards the Th2 phenotype and contributes to the prolif-
eration of Treg[99]. IL-10 downregulates Th1 cytokine expression 
(and stimulated the expression of HLA-G5, which is another im-
portant soluble factor expressed by MSCs that it is described 
below[102]. It can also antagonize IL-12 during the induction of 
an inflammatory response, thus decreasing the maturation and 
function of DCs[103].

Nitric oxide (NO): Nitric oxide (NO) is a bioactive molecule 
produced by NO synthases (NOSs), of which there are 3 sub-
types: inducible NOS (iNOS), endothelial NOS (eNOS), and 
neuronal NOS (nNOS)[104]. iNOS expression is inducible and 
plays a major role in immune regulation[105]. Sato et al found in a 
mouse model that Stat5 phosphorylation in T cells is suppressed 
in the presence of MSCs and that NO is the key component in-
volved in the suppression[106]. 

Human leukocyte antigen-G molecules (HLA-G5): Human 
leukocyte antigen-G molecules (HLA-G5) are a soluble isoform 
of the nonclassic HLA-G molecules, which are MHC-like pro-
tein characterized by their low polymorphism expression pattern. 
HLA-G5 is secreted by MSCs and is IL-10 dependent, direct 
contact between MSC and T cell is required to obtain a posi-
tive feedback loop and thereby a full HLA-G5 secretion[102,107]. 
This soluble molecule has been directly linked to the tolerogenic 
ability of MSCs to induce the expansion of CD4+ CD25 high 
FOXP3+ Treg cells[108]. HLA-G5 has also been shown suppress 
T cell proliferation and decrease the cell-mediated cytotoxicity 
and IFNy secretion by NK[102].

Leukemia inhibitory factor (LIF): Leukemia inhibitory fac-
tor (LIF) is a functional glycoprotein cytokine that participates 
in both the humoral and cellular immune response[109]. Further-
more, LIF plays an essential role in establishing pregnancy by 
enabling an allogeneic fetus to avoid rejection by the mother[110]. 
LIF also has a role in the regulation of transplantation tolerance 
in vivo[111]. LIF is constitutively secreted by hMSCs. Nasef et 
al have shown that the use of LIF-neutralizing antibodies de-
crease Foxp3+ Treg cells, thereby suggesting the involvement 
of LIF in the generation of Treg cell. They also have found a 
positive correlation between LIF and HLA-G gene expression 
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by MSCs[109-112]. 

Galectins (Gal): Galectins (Gal) are a family of soluble lectins 
expressed in various tissues characterized by their high binding 
affinity to b-galactoside residues. The degree of conservation of 
their structure sequence across different species characterizes 
their involvement in the regulation of cellular homeostasis, in-
cluding many roles in innate and adaptive immunity[113], Among 
the 15 known subtypes, several galectins have been implicated 
in MSC-mediated immune regulation described below[114].

Gal-1: Galectin-1 is a highly expressed intracellular protein in 
MSCs with diverse functions. It has antiproliferative effects on 
activated T cells[115] and also supports the survival of naïve T 
cells[116]. Gieseke et al. demonstrated the key immune modula-
tor role that galectin-1 plays on different effects on lymphocyte 
sub populations and their cytokine profile. This was done with 
the use of specific knockdown experiments in human MSCs[117]. 
Galectin-1 was found to inhibit the secretion of cytokines typ-
ical of Th1 and Th17 cells while promoting Th2-type cytokine 
secretion[116]. Furthermore, galectin-1 was shown to modulate 
the release of TNFa, IFNy, IL-2 and IL-10 in graft versus host 
disease[117,118]. Importantly galectin-1 promotes the generation of 
tolerogeneic DC[119]. In addition, during feto-maternal tolerance, 
galectin-1 prevents fetal loss in stress-challenged pregnancies 
by modulating the Th1/Th2 cytokine balance and by inducing 
tolerogenic cells[120].

Gal-3: Over the past decade, galectin-3 has been shown to be 
an integral component in the immunosuppressive capacity of 
MSCs. Galectin-3 has the ability to impair the function of DC, 
which can in turn inhibit T cell function[121]. It also induces both 
phosphatidylserine (PS) exposure and apoptosis in primary acti-
vated human T cell[22].

Gal-9: Galectin-9 is a 36 kDa tandem-repeat galectin that is 
upregulated by MSCs in an inflammatory environment. This 
subtype has been shown to maximize the immunomodulatory 
potential of MSCs, by inhibiting the proliferation of T cells and 
B cells. Galectin-9 contributes to the suppression of antigen trig-
gered immunoglobulin release[123].  
 The abundance of mediators identified suggests that 
MSCs develop different immunosuppressive mechanism under 
different disease conditions. Overall, it is now well established 
that MSCs exert potent and diverse modulatory effects on the 
immune system, most of which are suppressive in nature, and of 
potential therapeutic value.

Animals Studies with MSCs
 Several studies have documented the dramatic clinical 
improvements, observed in animal models, and by using system-
ically introduced MSCs as a therapy of organ injury and immune 
modulation(Table 1). MSCs can be safely administered in ani-
mals and contribute to improved organ function following (lung 
fibrosis animal study) and account for the beneficial immuno-
modulatory effects from MSCs. Some examples are described 
below and summarized in Table 1.
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Table 1: Immunomodulatory effects of mesenchymal stem cell-based therapy on animal studies.

Disease MSC Source Species Route of 
Administration Mechanism of  MSC effect Reference

GvHD hUC-MSCs
DBA/2 
(H-2Kd)
 mice

Intravenous Expression of IDO and TGF-B Guo J et al, 2011[124]

GvHD
C57BL/6 mice, 
NOS−/− or IFNγR1−/−  
BM-MSCs

C57BL/6, 
C3H/HeJCr, 
and F1

Intravenous

Upregulation of inducible nitric 
oxide synthase (iNOS) and 
leukocytes chemokine (CXCL9, 
CXCL10 and CXCL11)

Ren G et al, 2008[155]

Systemic lupus 
erythematosus

C3H/Hej mice BM-
MSCs MRL/lpr mice Intravenous Downregulation of Th17 levels 

and increase of Foxp3+cells Sun L et al, 2009[125]

Systemic lupus 
erythematosus hUC-MSCs NZB/W F1 

mice Intravenous
Induce the polarization of Th2 
cytokine and proinflammatory 
inhibition.  

Chang JW et al, 
2011[127]

Autoimmune 
encephalomyelitis 
(model of multiple 
sclerosis)

Mice BM-MSCs C57BL/6 Intravenous
Inhibition of T-cell receptor 
dependent and independent poly-
clonal stimuli

Zappia E et al. 
2005[128]

Autoimmune type 1 
diabetes Murine BM-MSCs NOD mice Intravenous

Inhibition of autoreactive Tcells 
and increase in the percentage of 
Tregs and Th2 cytokines

Fiorina P et al, 
2009[130]

Asthma Balb/c mice BM-
MSCs

C57BL/6J 
mice intravenous Increase TGF-beta production 

Nemeth K et al, 
2010[133]

Allergic rhinitis Balb/c mice adipose 
tissue MSCs Balb/c mice Intravenous

Inhibition of eosinophil inflam-
mation via shifting from Th2 to 
Th1 immune response.

Cho Ks et al, 
2010[135]

Pulmonary fibrosis Mouse BM-MSCs Bleomycin
 mouse model intravenous

Induce mobilization of endoge-
nous stem cells through GM-CSF 
and G-CSF.

Rojas et al, 2005[132]

Pulmonary fibrosis Mouse BM-MSCs Bleomycin 
mouse model Intravenous None specific Ortiz et al, 2003[131]

Abbreviations: GvHD: graft versus host disease; SLE: systemic lupus erythematosus; MSC: mesenchymal stem cells; hMSC: human mesen-
chymal stem cells; hUC-MSC: human umbilical cord derived mesenchymal stem cell, BM-MSC: bone marrow derived mesenchymal stem cell.

 Graft-versus-host disease (GvHD) is a life threatening 
complication following allogeneic transplantation of hematopoi-
etic stem cells in many malignant and non-malignant disorders. 
Characterized by dysregulation of inflammatory cytokines and 
activated donor cells which attack recipient organs and tissues. 
The first-line treatment is currently steroids. However, in pa-
tients with acute or severe, steroid-resistant GvHD the outcomes 
are poor. In recent years, MSCs have been successfully applied 
to mouse models of GvHD. These studies have shown increased 
in the survival rate from the mice, decreased immune cell in-
filtration and upregulation of anti-inflammatory cytokines[105,125]. 
Systemic Lupus Erythematosus (SLE) is an autoimmune inflam-
matory disease with multi-organ involvement. Due to the obser-
vations presented by Sun et al. from MSCs derived from SLE 
mouse, the use of allogeneic rather than autologous MSCs are 
suggested for SLE[135,136]. The transplantation of umbilical cord 
MSCs was found to decrease Th1 cytokines (IFN-y, IL-2) and 
pro-inflammatory cytokines (TNF-a, IL-6, IL12) and increase 
Th2 cytokines (IL-4, IL-10). In murine models, MSC therapy 
ameliorates disease activity, improves serologic markers and 
certain clinical symptoms such as renal function. Thus, supports 
the possibility of using umbilical cord MSCs in the treatment for 
SLE[127]. 
 An experimental autoimmune encephalomyelitis has 

been used as a model for multiple sclerosis (MS). MS is a chron-
ic inflammatory de-myelinating disease of the central nervous 
system. A potential therapy to enhance the clinical manifesta-
tions has been shown through the intravenous administration of 
MSCs. When MSCs were used at the disease onset, or at the 
peak, beneficial effects were exhibited. Whereas no improve-
ment was observed when MSC therapy was used during the 
chronic phase. MSCs decreased the immune cell infiltration and 
demyelination in the central nerve system by inducing tolerance 
to myelin oligodendrocyte glycoprotein in addition to the de-
creased in the CD4+ T cell and IL-17 cytokine[128,129]. Thus, sup-
porting the immunomodulatory role of MSC for the therapy in 
MS. 
 A remarkable property of MSC in the treatment of au-
toimmune type I diabetes significantly delayed the onset of di-
abetes in non-obese diabetic mice. Injections of MSC into mice 
were capable to protect islet mass fusion, as supported by insulin 
staining, islet morphology, and lymphocyte infiltration. Promis-
ing results were shown by Fiorina et al in temporarily reversing 
the hyperglycemia for more than 2 months, in new-onset diabet-
ic mice[130]. 
 In addition to autoimmune diseases, MSC are also ca-
pable of inhibiting the inflammation and the apoptosis in the 
bleomycin-induced pulmonary fibrosis model by decreasing the 
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accumulation of connective tissue[131,132]. This suggests that cell-
based therapies may be potential therapeutic approaches for lung 
regeneration and normal wound healing after injury. In mouse 
model of allergic inflammation[43] and asthma[133], MSCs were 
shown to provide a beneficial effect by decreasing the eosino-
philic Th2 inflammatory response, evidenced histologically and 
by IgE serum concentrations[134,135].

Clinical Applications of MSCs
 Understanding of the underlying biological mecha-
nisms of MSCs in modulating the immune response and tissue 
regeneration in preclinical studies triggered an explosive inter-
est from numerous research groups to explore its role in clinical 
settings. More than 600 clinical studies have been registered on 

the clinical trial database (www.clinicaltrials.gov) in the hope 
of dissecting the therapeutic roles from MSC in various human 
diseases.
 Beneficial effects of MSCs had been found in the treat-
ment for many immune-associated diseases. The immunomodu-
latory effects of MSCs on clinical trials are summarized in Table 
2. For instance, MSC have successfully reduced the incidence 
and severity in patients diagnosed with GVHD with severe ste-
roid resistance[136-139]. Similarly, in autoimmune diseases such as 
SLE and MS, the application of MSCs was safe and effective. 
No toxic effects were observed. The immediate immunosuppres-
sive capacity from MSCs has been described[140-145]. However, 
the specific mechanism through which improved the patient con-
dition is unknown.

Table 2: Clinical trials using mesenchymal stem cell-based therapy.

Disease Sample 
size

Study 
Period

MSC 
source Dosage Administra-

tion Route Effects Clinical 
Trial Stage Reference

GvHD 55 Adults 60 
months

Allogeneic 
BM-MSCs

0.4-9 x 106/
kg, 1-5 doses I.V

CR (30/55) PR (9/55), 
NR (16/55) Increase 
overall survival in CR, no 
adverse events 

Phase II
Le Blanc K et 
al, 2008[137]

GvHD 31 Adults 28 days Allogeneic 
BM-MSCs

2 or 8 x 106/
kg, 1 dose I.V CR (24/31), PR (5/31)NR 

(2/31), no adverse events. Phase II
Kebriaei P et 
al, 2009[136]

GvHD 2 Chil-
dren

18 
months UC-MSCs

3.3 – 8.0 x 
106/kg, 4 
doses

I.V CR (2), no adverse 
events. Case Report

Wu KH et al, 
2011[139]

GvHD 13 Adults 257 days Allogeneic 
BM-MSC

0.9-1.1 x 106/
kg, 2 doses I.V CR (2/13) PR (5/13), NR 

(6/13), no adverse events Case series
Von Bonin M 
et al, 2009[138]

SLE 40 Adults 12 
months UC-MSCs 1x106/kg, 2 

dose I.V
CR (13/40), P (11/40), 
NR (16/40), 7 recurrence, 
no adverse events.

Wang D et al, 
2014[140]

SLE 35 Adults 21 
months

8 receive 
BM-MSCs 
and 27 UC-
MSCs

1x106/kg/1-3 
doses I.V

CR (33/35), recurrence 
(2/35), Increase in Treg 
and decrease of Th17. No 
adverse events

Li X et al, 
2013[145]

SLE 87 Adults
27 
months 
(mean)

BM-MSCs 
and UC-
MSCs

1x106/kg/ 1 
dose I.V

CR (43/87)at 4 years, 
P/NR (44/87), relapse 
20/87at 4 years, no ad-
verse events

Phase I/II
Wang D et al, 
2013[141]

Multiple 
sclerosis 
and Amy-
otrophic 
lateral 
sclerosis

MS: 15 
Adults
ALS: 19 
Adults

6 months Autologous 
BM-MSCs

MS: 6.32 x 
107/kg ALS: 
1.74 x 107. 
1 dose

Intrathecal 
and I.V

CR (20/34), P/NR 
(14/30), no adverse 
events

Phase I/II
Karussis D et 
al, 2010[143]

Multiple 
sclerosis 10 Adults 10 

months

Autoge-
nous BM-
MSCs

(1.1 - 2.0)  
x 106/kg. 1 
dose

I.V

CR (10/10), improvement 
in visual acuity, visual 
evoked response latency 
and optic nerve area. 
No significant adverse 
events. 

Phase IIA
Connick P et 
al, 2012[144]

Diabetes 41 Adults 24 
months

Autologous 
BM-MSCs Non state I.M

Improved painless walk-
ing time, ankle-brachial 
index, transcutaneous 
oxygen pressure and 
magnetic resonance 
angiography. No serious 
adverse events

Phase I
Lu D et al, 
2011[148]
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Type 1 
Diabetes

29 Ado-
lescents

21 
months

Allogeneic 
UC- MSCs 

(1.5 - 3.2 x 
107/kg I.V

CR (3/15), P (9/15), NR 
(3/15) Improved recovery 
and regeneration of 
islet B-cells. No serious 
adverse events

Hu J. et al, 
2013[146]

Type 1 
Diabetes 11 23 

months
Allogeneic 
ADMSCs

4.6 x 107 - 
2.48 x 108 
cells/dose 
(range)

I.V(Intrapor-
tal)

CR (11/11), Gradual de-
crease in insulin require-
ments and in Hb1Ac. No 
adverse events

Vanikar AV et 
al, 2010[147]

Type 2 
Diabetes 10 Adults 3 Months

Allogeneic 
placenta 
derived 
MSCs

1.35 x 106/kg, 
3 doses I.V

CR (10/10) Decrease in 
insulin requirements. No 
adverse events

Phase I
Jiang R et al, 
2011[149]

Type 2 
Diabetes 22 Adults 12 

months UC-MSCs 1 x 106/kg, 2 
doses I.V

CR (17/22) PR/NR 
(5/22) Improvement in 
B cell function, systemic 
inflammation (IL-6 and 
IL-1B) and T cells counts 
(CD3+ and CD4+). Ad-
verse events (2/22)

Phase I/II
Liu X et al, 
2014[150]

Idiopathic 
Pulmonary 
Fibrosis

8 Adults 6 months

Allogeneic 
Placenta 
derived 
MSCs

1 x 106/kg or 
2 x 106/kg I.V

PR/NR (8/8). Small 
bowel obstruction, left 
lower lobe consolidation 
and mild episodes of 
bronchitis were reported 
as side effects  (3/8)

Phase 1b
Chambers 
DC et al, 
2013[151]

Idiopathic 
Pulmonary 
Fibrosis

14 Adults 12 
months

Autologous 
AD-MSCs 

1.5 x 106/kg, 
3 doses

Endobron-
chial 

NR (14/14) Worsening 
cough and dyspnea were 
reported as adverse 
events (2/14)

Phase 1b
Tzouvele-
kis A et al, 
2013[156]

Abbreviations: GvHD: graft versus host disease; SLE: systemic lupus erythematosus; MSC: mesenchymal stem cells; UC-MSC: umbilical cord 
derived mesenchymal stem cell, BM-MSC: bone marrow derived mesenchymal stem cell; AD-MSC: adipose derived mesenchymal stem cell; I.V: 
intravenous; I.M: intramuscular; CR: complete response; PR: partial response; NR: no response.

 Recent studies have shown that MSCs significantly 
reduced the insulin requirement in patients with diabetes type 
I after the administration of Wharton Jelly derived (Umbilical 
cord)-MSC’s[146]. Similar results were shown in an open-labeled 
clinical trial after co-transplantation of adipose derived-MSC 
and hematopoietic stem cells in the same population[147,148]. In the 
treatment of diabetes type 2, the administration of placenta-de-
rived MSCs improved the renal and cardiac function and the dai-
ly mean dose of insulin was reduced in 10 patients[149]. Another 
study using Wharton Jelly derived MSC also demonstrated im-
provements in the metabolic control and beta cell function[150]. 
Although there are multiple preclinical studies suggesting that 
MSC may be efficacious in the treatment of idiopathic pulmo-
nary fibrosis (IPF), very few clinical investigations have been 
reported. Chambers DC et al and Tzouvelekis et al. showed that 
intravenous MSC therapy has satisfactory short-term safety pro-
file in moderately severe IPF and improvements in quality of life 
parameters. However, no improvements in lung function indica-
tors were shown[151,152].

Challenges

 MSCs exhibit great potential in most preclinical and 
clinical data. However, many questions remain to be solved. The 
optimal source of MSCs, the optimal time window, the dosage, 
the route and frequency of MSC administration, the post-trans-
plantation safety and the long-term prognosis have still not been 

determined[153]. Although the use of autologous, allogeneic and 
xenogeneic MSCs have shown great response and a great prom-
ise for novel therapeutic approaches, it is important to pursue 
comparative studies to determine whether MSCs from alterna-
tive sources operate with the identical immune regulatory mech-
anisms as BM-MSCs, which are used in cellular therapy. These 
studies will be vital in determining alternative sources of MSCs 
for their potential implementation at the clinical level.
 Furthermore, the lack of standardized culture config-
uration together with the heterogeneous populations produced 
makes it difficult to compare the results from different studies. 
In addition, other issues still need to be addressed, such as the 
amount of immune cell subsets necessary to provide immuno-
modulation through MSC? Which pathway(s) is/are involved? 
What is the diverse systemic response towards MSC in differ-
ent disease settings? Are there any safety issues during further 
clinical trials? The MSC can be safely and routinely applied in 
the future only after these unexplored territories have been clar-
ified[154]. 
 Thus, in order to overcome these challenges, standard-
ized protocols for cell culture, differentiation, expansion and 
cryopreservation, as well as robust quality control systems, need 
to be in place. These factors in combination with safely precon-
ditioned and genetically modified MSCs may pave the way for 
the development of an effective and safe cellular therapy for 
countless human immune disorders.
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Conclusion Remarks

 Novel concepts of the immunomodulatory properties 
of MSCs were described in this review. The mechanisms, by 
which the MSCs interact within the immune system through the 
cell to cell interaction, and by releasing soluble factors, are also 
highlighted. Our current knowledge makes MSCs an important 
regulator of the immune tolerance and attractive therapeutic tar-
get for limiting autoimmune inflammation, preventing allograft 
rejection and potentiating antitumor responses. Although the 
results are very promising, an optimal and standardized manip-
ulation, a better understanding of the immune-biology, and the 
interactions within the microenvironment, needs to be strength-
ened in order to use them in a universal and effective way in the 
clinical setting.
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