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Abstract
Infogenomics is a project aimed at developing informational analyses of genomes 
adding a new perspective to the more common biological and biochemical investi-
gation on genomes. Here, we present InfoGenomics Tools, shortly IG Tools, a com-
putational framework, which consists of a collection of interactive tools, designed 
to support typical analyses required in the context of Infogenomics. Modularity, 
interactiveness, data visualization, and low-cost computational requirements are the 
main goal of IG Tools, where suffix arrays are a key point in the data structures 
representing genomes, and their algorithmic power allows us to speed-up genomic 
computations that would be prohibitive by using naive methods.
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Introduction

	 Nowadays, the genomes of hundreds of species have been sequenced, from 
bacteria to vertebrate kingdoms[1,2], and a huge amount of genomic information is 
available. The Human Genome Project[3] and the sequencing of thousands whole 
human genomes, such as those affected by rare disease[4], provide an invaluable 
source of knowledge. However, a deep understanding of the internal organization of 
genomes and of their specific languages is so far missing.
	 Recently, a project, called ENCODE[5,6], involved several scientists and 
laboratories around the world and provided evidence that 80% of the human ge-
nome, previously considered junk regions, is covered by functional elements. EN-
CODE created an encyclopaedia of DNA elements by annotating portions of the 
human genome in terms of their biochemical function.
	 On the other side, the Infogenomics project[7-9] aims at proving an anal-
ogous annotation, but in terms of informational concepts, by extracting genomic 
fragments, or genomic words, on the basis of their relevance, according to the infor-
mation theory. To this end, genomes are investigated by means of genomic distribu-
tions, genomic dictionaries, informational indexes, and genomic representations.
	 In the last decades, bioinformatics approaches, regarding sequence analy-
sis, were mainly focused on methodologies based on string alignment algorithms. 
However, even if they have been used to extract plenty of biological results, such 
approaches appear to be not suitable to discover genomic aspects of systemic nature. 
An alternative perspective[10-12] is based on alignment-free methods of genome anal-
ysis, where global properties of genomes are investigated.
	 A key concept of the informational perspectives in genome analysis is that 
of genomic distribution. A genomic distribution associates to the discrete values as-
sumed by a given a quantity, defined on genomes, the number of times these values 
occur in a given genome. The general concept of discrete probability distribution, 
called information source, was the starting point of the Information theory devel-
oped by Shannon[13].

	 Links between information theory 
and biology are well established, continu-
ously remerging, and deeply rooted (Shan-
non’s Ph.D. thesis, titled ‘An Algebra for 
Theoretical Genetics’ (1940), precedes his 
famous booklet where he notion of infor-
mation entropy was introduced)[14-16].
	 For example, distributions of co-
dons have shown that protein encoding re-
gions own a characteristic property, called 
3-peak regularity[17-19], which is absent in 
other parts of a genome. This regularity 
is often taken into account by gene rec-
ognition algorithms[20]. More in general, 
informational analysis helps to highlight 
periodicities in DNA sequences which are 
linked to biological meanings, such as nu-
cleosomal packaging and chromatin DNA 
pitch[21,22]. Other approaches based on the 
recurrence of genomic elements and on the 
study of correlation structures in DNA se-
quences[23] use mutual information, which 
plays a central role in the mathematical 
analysis of message transmission.
	 The recurrence distance distribu-
tion (RDD)[24,25] takes into account the dis-
tances at which a given k-mer recurs, and, 
for each recurrence distance, it specifies 
the number of time that the k-mer recurs 
at such distance. This distribution helps to 
highlight important features of genomic el-
ements[26], and can be used to identify and 
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capture recurrence properties of “genomic words”[27,28].
	 Dictionary based methodologies (such as [29-32]), aim at 
analysing genomic sequences through properties of collections 
of genomic words (dictionaries).
	 In general, software libraries are developed in order to 
hide low-level aspects regarding algorithmic knowledge or data 
representation. In this way, users who operate at higher level of 
abstraction, and who require ready-to-use black boxes, can be 
unaware of implementation details of basic components used in 
their analysis. For example, the LEDA library[33] provides algo-
rithms and efficient data structures in the field of graph theory 
and computational geometry. In Natural Language Processing 
(NLP), the Stanford CoreNLP toolkit[34] is an extensible pipe-
line, developed in Java, which provides most of the common 
core procedures used in the NLP field. In bioinformatics, several 
frameworks have been developed in order to provide easy-to-use 
implementation of the most used algorithms and data structures, 
such as sequence alignment algorithms or sequence indices 
based on suffix arrays and q-grams.
	 The SeqAn[35] library is an extensible C++ library that 
provides basis algorithms and data structures used in bioinfor-
matics, such as binary representation of biological sequenc-
es, alignment algorithms and sequence indices (suffix arrays, 
q-gram approaches, and FM Index). However, none of the data 
structure is equipped with dictionary operations (such as k-mer 
enumeration). The BioPerl tool kit[36] provides a collection of 
Perl modules for managing and manipulating sequences analysis 
pipelines. Both SeqAn and BioPerl do not provide interactive 
graphical interfaces. The BioJava project[37] provides a bioin-
formatics framework mainly focused on biological sequence 
alignment and protein structure analysis. The Bio-Conductor 
framework[38] is an extension to the R environment which aims 
at providing a deployment environment in order to facilitate 
computational analysis of high-throughput data. More than one 
thousand packages have been developed on top of it that are 
mainly focused on statistical analysis.
	 Here, we present a computational framework to support 
informational analysis typical of Infogenomics. Namely, a suite 
of interactive tools is mainly designed for extraction of k-dictio-
naries, set-theoretic operations on them, their visualization, as 
well as charts of distributions defined on k-mers and k-dictionar-
ies, and computations of indexes defined on these distributions.
Section 2 gives some preliminaries regarding genomic sequenc-
es and informational analyses taken into account by Infogenom-
ics and state-of-art methodologies for string processing. The IG 
Tools environment is introduced in section 3, where the main 
goals and the principal aspects of the project are described. Sec-
tion 3.1 describes the core data structure of the framework, by 
which basic dictionary operations are implemented. Sections 3.2 
and 3.3 focus on graphical IG Tools, by showing a selection of 
them. Conclusions and future works are given in the final section 
of the paper.

Preliminaries
	 Basic notation and concepts of Infogenomics are given 
below. More details can be found in[8]. A DNA sequence is ab-
stractly a string over the nucleotide alphabet Γ = {A, C, G, T}. 
The extended alphabet Γ˜= {A, C, G, T, N}, adds to Γ symbol 
N that represents an undefined nucleotide. Γk denotes the set of 
words of length k, called k-mers, including the empty string λ, 

and Γ+ denotes the set of all the possible non empty string over 
the alphabet Γ. Given a genomic string S = a1 • a2 • • • • • an, of 
length n, S[i, j] : 1 ≤ i ≤ j ≤ n is the substring of S from position i 
to position j (included), while S[i] = S[i, i] is the symbol in posi-
tion i of S. If n is the length of S, that is, S = S[1]S[2] ... S[n], then 
we write |S| = n, and S[1, j] : 1 ≤ j ≤ n is called a prefix of S and 
S[i,n]: 1 ≤ i ≤ n, is called a suffix of S. Substrings of S of type S[i, 
j] : i ≤ j ≤ n of length k are also called k-words, k -factors, k-mers 
of S (k may be omitted, when it is not relevant, or it may be 
assumed as a generic integer). In the following, entire genomes 
are denoted by letter G (possibly decorated). For a finite set A, 
then |A| denotes its cardinality, and for a finite multiset X (where 
elements may occur in many copies), then |X| denotes its size, 
that is, the sum of the multiplicities of elements occurring in X.
	 Given a word α, we identify with posS(α) the set of (ini-
tial) positions where α occurs in the string S and with multS (α) 
= |posS (α)| the multiplicity of α in S. A word α with multiplicity 
equal to 1 is called hapax (of S), otherwise it is called repeat. 
The set of all factors of S, of any length, is denoted with D (S), 
while the set of k-factors, for a specific value of k, is denoted 
with Dk(S).We remark that |D (S)| = (|S| × |S| + 1)/2.
	 Starting from Dk (S), we define the k-genomic table Tk 
(S) by equipping the words in Dk (S) with their multiplicities, 
thus Tk (S), mathematically corresponds to a multiset, or to a dis-
crete distribution, which can be represented with a list of associ-
ations α → multS (α), for α ∈Dk (S). The set of hapaxes of length 
k that occur in S is denoted by Hk (S), and the set of repeats of 
length k is denote by Rk (S). Many important indexes can be 
defined on genomes, related to characteristics of genome dictio-
naries. For example, mrl(G) is the length of the longest repeats 
of G. Of course mrl(G), is the minimum length, such that k-mers 
with k greater than mrl(G) are all hapaxes. Analogously, mhl (G) 
is the length of the shortest hapaxes of G, and of course, k-mers 
with k smaller than mhl (G) + 1 are all repeat. The index mfl (G) 
denotes the length such that all possible k-mers with k smaller 
than mfl (G) (maximal forbidden length) are included in D(G). 
These indexes are very important in many aspects of analysis of 
genomes. We mention them just for a better outline of infoge-
nomics approach, even if their importance and use is beyond the 
aims of the present paper.

Enhanced suffix array
	 The suffix tree is one of the most important data struc-
ture in string processing. It can be used to solve a myriad of 
problems in string processing such as substring searching or 
string regularities extraction[39]. Unfortunately, its space con-
sumption represents a limit in its application, especially in the 
field of computational genomics. A compact representation of 
suffix trees can be obtained by combining different data struc-
tures. In[40], suffix arrays (SA) and the longest common prefix 
(LCP) array are combined together to provide a data structure, 
called enhanced suffix array, which is equivalent to suffix trees.. 
Both SA and LCP arrays can be built in linear time, and are able 
to be extended with additional features. Enhanced suffix array 
are an extension of SA that provide a methodology for substring 
search in optimal time. Given a string S over an ordered alpha-
bet, its suffix array, SAS, is an array of positions of S having the 
same length of S, where S AS [i] identifies the starting position of 
the i-th suffix of S in the lexicographic order, while LCPS [i] for 
i>1 is the length of the longest common prefix between the suffix 
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SAS [i] and the suffix SAS [i − 1] (LCPS [1] is set to 0). A k-interval 
of LCPS is a contiguous range [i, j] of positions in LCPS such 
that:

LCPS [i] < k, LCPS [l] ≥ k for i< l ≤ j and LCPS [j + 1] < k.

	 Suffixes belonging to the same k-interval, for some 
positive integer k, share the same k-prefix, also called the prefix 
of that k-interval. Therefore, given a k-mer α that is prefix of 
some k-interval [i, j] of S AS, the positions of α in S are all and 
only those belonging to S AS[i, j]. Figure 1, shows a toy example 
of the enhanced suffix array for the string acaaacatat. The col-
umn i represents the arrays positions while the column suffixes 
shows the suffixes starting from S AS [i]. Both i and suffixes col-
umns are not stored inside the data structure. Once SA is built, 
suffixes[i]can be retrieved by looking at position S AS [i] of S. 
Thus, the memory requirement of a complete enhanced suffix 
array is given by the space needed to store SA and LCP arrays 
plus the space to represent the sequence. Given the SA and LCP 
arrays, suffix tress can be efficiently simulated to support sub-
string querying. Moreover, with the addition of LCP-intervals, 
SA can be used to enumerate the k-mers of S in lexicographic 
order. An example of their application to retrieve k-mer frequen-
cies in genomic sequences is given in[41].

Figure 1: Enhanced suffix array for the string acaaacatat. The gure also depicts 
the k-intervals of 1-mers and 2-mers contained in the given string, and retrieved 
by means of the LCP array.

InfoGenomics Tools
	 The main aim of the IGTools is to help the researcher 
to investigate genomes, from an informational point of view, by 
means of a set of interactive software packages having low com-
putational requirements and that could be executed on domestic 
computers. Thanks to this capability, the researcher can focus 
onto the main stream of the analysis process, gaining time and 
focusing on reading and interpreting data. For example, multi-
plicity analysis over several values of k is done instantly. Ex-
traction of dictionaries, and their representations and visualiza-
tions correspond to main IGTools functionalities. These can be 
directly applied to the simple case of Dk(G), or to more complex 
cases of word selections, according to specific constraints (cov-
erage, elongation, anti-random properties) that can be realized 
by combining basic functionalities within more complex proce-
dures. Moreover, basic genomic distributions and their visual-
ization (for example, recurrence distance distributions) can be 
performed by means of IGTools with low computational costs, 
and genome indexes evaluation over genomes, dictionaries and 
distributions can be directly computed.
	 IGTools core library supplies genome representations 
with their corresponding suffix arrays[41,42], which are well-es-
tablished data structures, here adapted to genomic sequences. 
Moreover, the extended suite includes Graphical user interfaces 

(GUI) and command-line interfaces (CLI). CLIs are suitable for 
batch and/or extensive computations, while GUIs provide an in-
teractive interface for investigative analyses.
	 A collection of API for developers is provided, which is 
easy to use and to extend for custom analyses. APIs provide ac-
cess to all the abstraction levels of the framework (Figure 2). The 
lowest level implements the core data structures and algorithms 
(enhanced suffix arrays[40], and succinct nucleotide sequence 
representation). The middle level implements typical opera-
tions for dictionary construction and for the realization of basic 
elaborations over dictionaries (words enumeration, localization, 
multiplicity count, elongation, as well as set-theoretic operations 
among dictionaries). Finally, the highest level implements the 
typical informational analyses defined in Info genomics, such 
as the computation of genomic distributions, their analysis and 
manipulation.

Figure 2: Abstraction layers and functionalities of the IGTools platform.

	 An important aim of the IGTools is to facilitate the 
different types of users involved in genome analyses. It is an 
open source resource such that developers can investigate, mod-
ify and extend it with new core functionalities. They can also 
combine the already implemented functionalities within their 
own software thanks to the library APIs. Graphical and com-
mand-line interfaces are intended to be used by users who have 
not programming skills, but want to apply to specific genomes 
one the informational analyses available in the IGTools envi-
ronment. Table 1 reports the main functionalities offered by IG 
Tools and the level at which they are available to be used. For 
example, the dictionary size distribution, that reports the cardi-
nalities of Dk(G) for a given range of values of k, is computed 
by a procedure accessible via the core framework API, it can be 
retrieved by making use of a CLI tool, and it can be visualized 
and investigated with a tool included in the graphical interface. 
Beside informational analyses, the CLI suite includes a set of 
tools in order to deal with variable length dictionaries, namely 
set of words in FASTA format provided by the user. CLI tools 
are developed such that their output can be easily parsed (i.e. 
extract a textual tabular file such as CSV files). GUI tools are 
accessible via a unified interface depicted in Figure 3.
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Table 1: List of the main functionalities provided by IGTools. The table reports 
the level at which a functionality is made available. The user is referred to [7,8,9] 
for the complete terminology.

API CLI GUI

Genomic Indexes

|Dk(G)|, |Rk(G)|, and |Hk(G)| X X

mrl, mhl, k-completeness, k-entropy, k-lexicality X X X

min, max, average and SD of multiplicities in Tk(G) X X X

Genomic Distributions

Dictionary size distribution X X X

Multiplicity-CoMultiplicity X X X

k-mer multiplicities X X X

Parikh vector distributions X X X

RDD (minimal, non-minimal, self and pair recurrences)

extraction X X X

navigation within RDDs of Dk(G) X

extraction of enclosed sequences X X

Peak 3-regularity [19] analysis by means of RDD X X

Multiplicity Heat maps X X X

Expon. And Geom. Distribution Estimation X X X

Metrics: average value, SD, skewness, Kurtosis, percentiles X X

Divergences (KL [43], KS [44] , sum of differences) X X

Peak recognition X X

Genomic Representation (and visualization)

Visualization of G X

Visualization of Dk(G) X

Dictionary operations

Set-theoretic operations on Dk(G) X X

Variable-length dictionaries

Set-theoretic operations X

Shared prefixes X

Duplicate removal X

Relevant genomic distributions X

Statistics with respects to G

H(D, G), R(D, G), MH(D, G) and MR(D,  G) X

coverage X

coverage by word length X

Parikh vector Coverage X

multiplicity-comultiplicity distribution X

Other kind of analyses

Random genome generation X X

Clustering coecients [45, 26] X X

Unique G factorization algorithms [30] X X

	

Figure 3: A usage example of the GUI interface of IGTools. In the left side, the 
gure show the main window of the GUI, which serves as entry point to the set 
of graphical analyses that can be performed on genomic sequences. The main 
window visualizes a list of sequences that ave been previously uploaded (even in 
previous working sessions) by the user. Sequences can be uploaded or removed 
from the workspace via the Resources menu. Their representations (sequence 
and indexing structures) are loaded in main memory on demand, when an analy-
sis has to be performed on then, and they can be explicitly released by the user in 
order to gain memory resources. In the proposed example, the tool for RDD dis-
tributions of pair-recurrences have been selected from the Tools menu. It is de-
picted by the window shown in the central part of the gure. Then, the recurrence 
distance 66 have been selected by clicking on the corresponding bar of the dis-
tribution chart. After the recurrence distance selection, the set of sequences en-
closed between occurrences of the word AAG at distance 66 is shown in a sepa-
rate window (right side) by making use of the technique described in Section 3.3.

	 The software is entirely developed in Java, using the 
OOP (Object-oriented programming) paradigm. The GUI side is 
implemented by using the standard framework JFC/SWING. An 
external library, called JFree Chart, is used to visualize classical 
widely used charts, and in-house components were developed to 
support further efficient data visualizations. The choice of Java is 
due to the different types of users that IG Tools wants to serve. A 
similar framework is SeqAn but it is developed in C++, this pro-
gramming language requires advanced programming skills, and 
it results more difficult to develop graphical user interfaces[43].

NELSA: An Extended Data Structure
	 The basis of informational analyses over genomes are 
set operations over genomic dictionaries. The k-mer enumera-
tion operation of IGTools lists all the words of a specified length 
with are owned by a genomic sequences, namely it serves to re-
trieve the Dk (G) dictionary of a given sequence G. Besides word 
enumeration, one may also want to directly access to word prop-
erties by a searching operation. Then, for each word of a dic-
tionary of G, it is desirable to retrieve the number of times that 
it occurs, as well as the positions of its occurrences within the 
considered genome. With multiplicity information, which can be 
easily translated in terms of frequency, we can discriminate be-
tween hapaxes and repeats, and perform distributional analyses 
based on word multiplicity. With data regarding the positions of 
words, we can perform positional analyses, such as recurrence 
distances and biological annotation.
	 In the following, we first introduce the biological se-
quence representations used in IGTools, then we show the core 
data structure NELSA and how informational operations can be 
performed on top of it[44].
	 IGTools provides two main approaches for succinct 
genomic sequence representation. The first ideally considers a 
DNA sequence as a string over the alphabet Γ, and the lexico-
graphic order in the nucleotide alphabet is assumed to be A < C 
< G < T. The symbols A, C, G, T are classically represented by 
the 2-bits encoding 00, 01, 10, 11, respectively. Then, the above 
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encoding is extended to a 3-bits schema where the symbol N is 
represented by 100 and a zero is prefixed to the 2-bit encoding 
of the other symbols. Both types of encoding maintains the orig-
inal lexicographic order (in 3-bits encoding N is consider as the 
last symbol of the alphabet) and the complementation property 
between nucleotides.
	 Some exiting libraries use only 2-bits encoding and they 
are not suitable to dial with real genomic sequences where un-
defined nucleotides are present. In dictionaries based approach-
es we are not interested in analyzing words which contains the 
symbol N, and we want to be able to discard them during basics 
operations, such as k-mer enumeration. Exiting approaches that 
use 3-bits encoding usually implements algorithms that discard 
N during search operations.
	 In IGTools N symbols are not eliminated but elaborat-
ed in a proper way. For example, enhanced suffix array have a 
further column to discriminate positions of S AS where symbol 
N occurs. Namely, starting from S AS we computed the array NS 
where NS [i] is 0 if S [S AS [i] ] = N, otherwise it equals the dis-
tance between S AS [i] and the position of the next symbol N in S. 
It can be shown that NS can be built in linear time. Moreover, we 
modify the notion of k-interval, given in section 2.1, by adding 
the constraint NS [l] > k for i ≤ l ≤ j. We call this new data struc-
ture NELSA (N-array Extended LCP-SA). Figure 4 shows the 
content of the NELSA structure built for a string that includes 
symbols of type N.

Figure 4: The NELSA data structure for the string acaaNacaNtat. k-intervals are 
retrieved by taking into account both the LCP and the N arrays such that k-mers 
containing the symbol N are discarded.

	 With the introduction of the N array, we are able to per-
form k-mer enumeration over the alphabet Γ in order to extract 
genomic dictionaries and genomic tables. The k-interval of a 
word is also used to obtain the multiplicity and the positions at 
which the word occurs. Recurrence distances can be calculated 
by extracting and sorting the positions. Besides word-specific 
properties, the NELSA structure can be also used to extract glob-
al informational features of the analysed sequence. For example, 
the maximum repeat length of a genome gives the length of the 
longest repeat contained in the genome. A brute force procedure 
could scan over the dictionaries Dk (G) for several values of k 
until the wanted element is found. Instead, thanks to the NELSA 
structure, this operation can be performed efficiently. In fact, the 
searched length corresponds to the maximum value contained in 
the LCP array (if no symbols N are contained in the sequence) 
that it is greater to the corresponding value in the N array.
	 The more data we include in the data structure, the 
higher is the memory requirement and this can turns in unaf-
fordable costs if, for example, one needs to compare several 
sequences. However, the suffix order, with which the NELSA 
is built, allows us to enumerate k-mers in their lexicographic 
order sequentially, by making use of relatively small parts of the 

data structure. Usually, the higher is k the smaller are the k-in-
tervals. In order to implement set-theoretic dictionary operations 
for long sequences we can use two different strategies. For low 
values of k, we use small tables where each position identify 
a k-mer in Γk. Instead, for high values of k, we can use a disk 
based NELSA version through which data related to each k-mer 
are loaded once a time. A useful example is given by dictionary 
intersections. Let us to image to intersect the k-dictionaries of 
two long sequences, S1 and S2, such that their NELSA cannot be 
loaded simultaneously in the primary memory. We can built their 
NELSA separately, save them on the disk, and perform their in-
tersection using the following strategy. Genomic sequences are 
represented in a succinct way thanks to the 3-bits encoding, thus 
they can be loaded in primary memory. Data, in SA, LCP and 
N arrays, corresponding to a given position i, are consecutively 
stored inside the NELSA file. The intersection operation can be 
performed by sequentially comparing k-intervals and the k-mers 
associated to them. In this way, just one k-interval per sequence 
needs to be loaded in memory. Thanks to this technique, we were 
able to enumerate all the 144,405 words, coming from the inter-
section of the D30 dictionaries of all human chromosomes, in just 
2,121 seconds.

K-mer Multiplicity
	 In this section we show some of the graphical tools 
provided by the IGTools suite which regard the notion of word 
multiplicity.
	 In[7], it is shown that biological species hold specific 
Zipf curves and multiplicity-comultiplicity (the number of words 
having a given multiplicity) bar charts. Thanks to IGTools, it is 
possible to quickly navigate among charts, obtained at different 
values of k, and investigate new features. For example, Figure 
5 shows the multimodal behaviour in the multiplicity-co multi-
plicity chart of human chromosome 22, highlighted applying a 
logarithmic scale to the x-axis.

Figure 5: Multiplicity-comultiplicity chart of human chromosome 22 for k = 7. 
The right side of the image shows the chart by applying a logarithmic scale to 
the x-axis. In this way, the two modes of the distribution appear more clearly.

	 A bar chart to plot k-mer multiplicities is often useful 
Figure 6. On the x-axis, k-mers in Γk are represented in their 
lexicographic order and their multiplicity is plotted via bars. Of 
course, for low values of k, this type of visualization does not 
involve special efforts, but for relatively high values IGTools 
has clear advantages. In fact, an interactive interface (provided 
by JFree Chart) helps to navigate (i.e. by zooming) the data, es-
pecially when a huge amount of information is shown.
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Figure 6: K-mer multiplicity charts of human chromosome 1 for k = 1 (upper 
left), 2 (upper right) and 6 (bottom).

	 Multiplicities charts can be used for a visual compari-
son of genomes, but when several sequences are involved a more 
compact representation is needed. For this reason, IGTools uses 
a visualization via heat maps. This kind of graphical represen-
tation is created by filling regions of a two-dimensional image 
with specific colors. Each region of the image identifies a spe-
cific k-mer and its multiplicity is represented by a color chosen 
from a gradient palette. The IG Tools suite provides specialized 
components to create heat maps and to set their parameters. In 
Figure 7, heat maps of 6-mer multiplicities coming from human 
chromosomes are plotted together. Each row identifies a specific 
chromosome and k-mers are plotted in their lexicographic order, 
from left to right, by a 1 × 100 pixels shape. Colors are chosen 
according to a mapping between the multiplicity and the desired 
gradient palette. A multiplicity equal to zero is mapped to black, 
while the maximum multiplicity (inside a single chromosome) 
is mapped to red. In the bottom side, a legend indicates the min-
imum and maximum multiplicity in each chromosome and how 
their map to colors. Like for the previous chart type, we can eas-
ily relate a specific area of the image to the corresponding k-mer 
thanks to the lexicographic order in which k-mers are plotted. In 
figure, it appears clear that human chromosomes share a com-
mon 6-genomic table except for the mitochondrial one.

Figure 7: Multiplicity heat maps of all human chromosomes. The colour gradi-
ent is mapped in the range [0; max a∈Dk(S) multS(a)] of each chromosome.

	 Multiplicities, presence ad absence of k-mers in a se-
quence are directly related to the multiplicity of their factors. 
Heat maps can also be useful to compare dictionaries obtained 
at different values of k. Figure 8 shows heat maps, for k in [1-6] 
interval, of human chromosome 22. An example analysis, that 
can be done using this visualization, is the direct correlation be-
tween the low multiplicity of 2-mer CG and the multiplicity of 
longer k-mers having CG as factor. Moreover, like for previous 
visual analyses, each biological species hold a specific resultant 
heat map as it appears in the figure. There are plenty of param-
eters that can be chosen in building the overall image. The most 
important ones regard the construction of the color gradient and 
how values are mapped to it. They may sensibly affect the leg-
ibility of reported data. Thus, every graphical tools is equipped 
with one more control panels which allow the user to fully cus-
tomize the output images. Figure 9 shows tools for constructing 
the heat map discussed above. Via the control panel, it is pos-
sible to choose the palette colors, which may results useful to 
color-blind users, and set other layout parameters such as font 
size and spaces between the rows in the image.

Figure 8: k-mer multiplicity heat map of Escherichia coli (top) and Homo sapiens 
(bottom). Values of k are (1, 2, 3, 4, 5, 6) and displayed in the same order, from 
top to bottom. Multiplicities are normalized in the range [0, max a∈Dk(S) multS(a)].

Figure 9: The graphical component of IGTools to generate heat maps.

Dictionary Visualization
	 In this section we introduce some techniques to visual-
ize DNA sequences and genomic dictionaries. The visualization 
of DNA sequences, or DNA k-mers, is based on a mapping be-
tween Γ˜ and a predefined color palette. Color combinations and 
color perception are well studied topics physiology and com-
puter graphics. In electronic systems, a well-established color 
model is the RGB one (Red, Green and Blue), formed by the 
three primary additive colors. In the human eye’s retina there ex-
ist three kind of photoreceptor cells responsible for color vision. 
They are distinguished according to the color to which they are 
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sensitive, specifically red, green and blue. They function best in 
relatively bright light, as opposed to rod (rhodopsin) cells that 
work better in dim light. Rod cells have a peak sensitivity to 
blue-green light, which can be approximate to yellow. Thus, the 
color palette that we use to visualize nucleobases is formed by 
the four colors mentioned above. This allows a visual uniformly 
perception among the nucleotides. We also admit a special color 
for undefined nucleotides (N). The color palette is mapped to Γ˜ 
by the following schema:(A → blue), (C → red), (G → green), 
(T → yellow) and (N → gray). Besidesthe proposed colorsche-
ma, every tools that make use of it also allows the user to choose 
a customized palette by the tool’s control panel, this feature may 
result useful in case of daltonian users.
	 Thanks to the above schema, dictionaries and their el-
ements can be presented in a visual way. K-mers in Dk(S) are 
displayed from top to bottom, according to their lexicographic 
order. In the image, each row represents a single k-mer printed 
from left to right using the colorscheme. An example of such 
representation is given in Figure 10 where 300 50-mers sharing 
a poly-AAG prefix are show. Due to the lexicographic order in 
which k-mer are plotted, the image results in a contiguous blue-
green area on the left side. Multiplicities can be plotted nearby 
k-mer lines as shown in the figure. In this case, the multiplicity 
chart is vertically arranged, since it follows the k-mers orienta-
tion, and values are logarithmically scaled. Due to the limited 
space, a special chart accompanies the multiplicity one to iden-
tify hapaxes (displayed with a red segment) and k-mers having 
multiplicity less than 11 (blue segments). Moreover, two further 
visualization parameters can be set. The first one still regards 
multiplicities and consists in changing dynamically the shape 
with which k-mer nucleotides are plotted, in such a way that the 
height equals the k-mer multiplicity. The second one does not 
reshape the polymer representation but plots the k-mer and its 
following nucleotides in the sequence (looking at its position in 
G) up to the LCP value. Figure 10 shows several plots obtained 
by combining visualization parameters. When the NELSA is 
loaded in primary memory, the viewer tool allows to navigate 
in real-time along the dictionary by mouse scrolling or keyboard 
keys. Displaying genomic dictionaries by graphical representa-
tion allows to visualize local details and, combined with global 
details (such as multiplicity chats shown in the previous sec-
tion), gives a better understanding of their phenomena. These 
features appear more evident on increasing k, when dictionaries 
became very large and present a lot of missing words[45].

Figure 10: Partial plots of the same D50 dictionary (of human chromosome 22) 
region, visualized using di erent parameter settings. K-mers are represented with 
shapes of size 4x1 and plotted in western writing style. (a) is a simple visualiza-
tion. In (b) multiplicity bars are shown as well as in (c) and (d). K-mer shapes 
are stretched according to multiplicity, in (c) and (d). In (d), words are extended 
up to the LCP value.

Conclusions 

	 In this paper we presented the general ideas behind 
the IGTools suite, developed in the context of the Infogenom-
ics project. The main aim of this software concerns with the 
extraction of informational regularities. The results, obtained 
from this kind of analyses, could be useful to integrate biochem-
ical and biological annotations with informational annotations. 
Here, only some preliminary functionalities were considered. 
More complex genomic analyses are under development, which 
are grounded on specific aspects of statistical and information-
al properties of dictionaries. In this context empirical entropies 
(easily computable by IGTools), several kinds of entropic di-
vergences (and their specializations to genomes), and random 
genomes are crucial notions for the extraction of genomic dic-
tionaries where words are selected by means of sophisticated 
informational filters, and their relations and categories can be 
shed new light in the complex structure of real genomes.
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