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Introduction

	 Dual infection is infection with strains or pathogens de-
rived from two different individuals, and can be categorized into 
co-infection and super-infection[1]. Co-infection is defined as an 
infection with two heterologous strains or pathogens either si-
multaneously or within a brief period of time before an infection 
with the first strain or pathogen has been established and an im-
mune response has developed[2]. In the case of HIV, co-infection 
would occur within the first month of infection. Super-infection 
is defined as infection with a second strain after the initial infec-
tion and the immune response to it has been established.
	 Human Immunodeficiency Virus (HIV) and Tuberculo-
sis (TB) co-infections present an immense burden on health care 
systems and pose diagnostic and therapeutic challenges globally 
particularly in sub-Saharan Africa and Asia[2]. The two diseases 
interfere and impact the pathogenesis of each other, leading to 
a typical presentations and diagnostic complications[3,4]. These 
challenges have serious implications on the design, quality and 
continuity of care, monitoring and interpretation of control tar-
gets[5,6].
	 A number of mathematical models on co-infection have 
been formulated and analysed[7,8,9,10,11,12,13,14,15,16,17]. The studies 
discussed the HIV-TB associated morbidity and mortality com-
plications and ignored a possibility of simultaneous transmis-
sion of both HIV and TB pathogens (co-infection). For instance, 
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Abstract
	 A non-linear deterministic mathematical model of HIV-TB co-epidemic is 
formulated and analyzed. The aim of the study is to investigate the effects of du-
al-infection on the transmission dynamics of the two diseases. We make distinction 
between two processes of transmission: co-infection and super-infection. We employ 
traditional analytical methods of analysis to determine conditions for existence of 
steady states and their stability. Furthermore, we determine the reproduction num-
ber of the model using the next generation operator technique and show that the 
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unstable if  R0 >1. These results have implications on the design of control strategies.
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Sharomi et. al formulated a deterministic model of TB and HIV 
co-infection with the aim of evaluating the impact of various 
treatment strategies in reducing the burden of the twin-epidem-
ic. Corbett et.al reviewed TB epidemiology in Africa and policy 
implications of HIV/AIDS treatment scale-up. The study further 
investigated the dynamics of drug resistance and the effects of 
latent co-infection on intervention that targeted latent class. Long 
et.al developed a co-epidemic model to study the transmission 
dynamics of HIV/AIDS and TB. Castillo-Chavez[18] and Song 
provided a detailed review transmission dynamics and control of 
TB. Colijn et.al developed a simple model of an infectious dis-
ease which incorporated a latent phase and compared and con-
trasted results of super-infection and co-infection models. In this 
paper, we employ the idea introduced in[19] to extend Long et.al 
co-infection model at population level by incorporating dual in-
fection (co-infection and super-infection). The aim of the study 
is to investigate the effects of simultaneous transmission of both 
HIV and TB pathogens on the disease dynamics.
	 This paper is organized as follows: section 2, presents 
model formulation, model analysis is carried sections 3 (repro-
duction numbers, existence of equilibria) and 4 (stability anal-
ysis). In section 5, we perform some numerical analysis, and 
discuss and conclude the paper in section 6.

Model formulation
	 We consider an SII x SI x SII problem in which the host 
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population is divided into four mutually disconnected classes. 
The susceptible class, JS, comprising individuals at risk of either 
HIV or TB or both (dual infection). TB-only infectious class, JT, 
HIV-only infectious class, JI, HIV-TB co-infected class, JIT.
	 The susceptible population is replenished through 
births at constant recruitment rate  and is decrease through in-
fection with TB, HIV and HIV-TB infection at rates λ1, λT   and 
λ1T  respectively. The TB, HIV and HIV-TB co-infection com-
partments are replenished through infection at rates λ1, λT  and 
λ1T  given by

 λ1  = β1 (JI +ηIJIT), λT = βI (JT + ηTJIT),  and  λIT = βIT min(JI, JT)

Where βI βT  and βIT =κβI βT are respectively the transmission co-
efficients for HIV, TB and HIV-TB. The parameter κ << 1, corre-
spond to the assumption that the two pathogens are rarely trans-
mitted simultaneously, while κ >1 assumes high transmissibility 
of both pathogens. The modification parameters ηI ≥ 1 and   ηT  
≥ 1 account for the assumption that dually-infected individuals 
have higher transmission rates of HIV and TB respectively, com-
pared to singly-infected individuals. Furthermore, the parame-
ters φI ≥ 1 and φT  ≥ 1  (also modification parameters) account for 
the level of risk of singly-infected individuals to another infec-
tion (super-infection). The host population is subjected to con-
stant natural mortality rate μ with TB, HIV and HIV-TB popula-
tions subjected to an additional death associated to infections δI , 
δT   and δIT respectively. Even though HIV does not cause death, 
we assume that individuals acquire opportunistic infections that 
lead to death. The description and assumptions above lead to the 
following autonomous system of differential equations:

 ϳS = Λ - λIJS - λTJS - λITJS - μJS
 ϳI = λIJS  - φTλIJI - (μ + δI) JI 
 ϳT = λTJS - φIλIJT - (μ + δT)	
 ϳIT = λIT + φTλTJI  + φI λIJT - (μ + δIT)JIT (1)
with changes in the total population governed by
 Ṅ(t) = Λ - μN - δIJI  -  δT,JT - δIT JIT ,
Where N(t) = JS + JI + JT + JIT

Positivity of solutions and Invariant region
From equation (2), we have
 Ṅ(t) = Λ - μN.
which upon integration yields
 N(t) ≤ 1/μ [Λ - Ae-μt]. (3)
Taking the limit as t approaches infinity, we obtain
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result can be summarized with the following lemma.

Lemma 2.1
All solutions of the system (1) starting in 4

+ℜ  are bounded and 
consequently enter the attracting set Ω within the first octant.

Model analysis
The model reproduction number,  R0

	 The basic reproduction number R0 is defined as the 
number of secondary infections produced by a single infectious 
individual introduced in a wholly susceptible population during 
his or her entire infectious period[20,21]. This quantity plays a piv-
otal role in characterizing the epidemic and the design of control 
programs. Using the next generation operator by[20,21], we have 
decompose system (1) into a matrix of generation of new infec-
tions and other transitions as,
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Noting that the infected classes are JI , JT and JIT  (m = 3), we 
evaluate the derivatives of F and V at the disease-free equilibri-
um to get
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From which, we obtain FV -1 and compute the reproduction num-
ber of the model, as the spectral radius or the dominant Eigen 
value given by
 ρ(FV -1) = R0 = {R0I, R0T, R0IT},
Where
R0I = (Λ/μ)(βI/μ + δI), R0T = (Λ/μ)(βT / μ + δT) and 
R0IT = (Λ/μ)(βIT /μ + δIT).

The threshold parameters R0I , R0T and R0IT are defined as the 
basic reproduction numbers due to HIV, TB and HIV-TB respec-
tively.

Theorem 3.1 The disease-free equilibrium, E0 is locally asymp-
totically stable when R0 < 1 and unstable whenever R0 > 1.

To illustrate Theorem 3.1, we line arise of system (1) around the 
disease-free equilibrium and obtain
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  (5)

The eigen values of the Jacobian matrix JE0  are λ1 = -μ, λ2 = -(μ + 
δI)(1 - R0I), λ3 = -(μ + δT)(1 - R0T) and λ4 = -(μ + δIT)(1 - R0IT). All 
eigen values λ1, λ2 ,λ3  and λ4 have negative real parts only if R0I 
< 1, R0T < 1 and R0IT < 1. Thus, establishing Theorem 3.1.

Steady State solution
	 To determine the equilibria of system (1) we set the 
right hand side of the system to zero and obtain in terms of λ*

I, 
λ*

T
   and λ*

IT.
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Where Φ0 = (μ + δIT)(1 - RITJ
*
S)  and RIT = βIT / μ + δIT . We 

observe that the existence of equilibria is governed by the con-
dition RITJ

*
S < 1. The threshold parameter RIT is define as the 

average number of new co-infections generated by a co-infected 
individual introduced in a wholly susceptible population.
Substituting J*

S , J
*

I , J
*
T and J*

IT into the expressions for λI , λT, 
and λIT , we obtain
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Where  φT = φT / μ + δI,  φI = φI / μ + δT, B1 = μ + φTλ
*
T and  B2 = 

μ + φIλ
*

I,  
I
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	 The threshold parameters I
ITR  is defined as the average 

number of new dual infections due to an HIV infective intro-
duced into a TB infected population, while and T

ITR  is the average 
number of new dual infections due to a TB infective introduced 
in an HIV infected population.

The solutions (7) and (8) lead to the following results
λ*

I = 0  or F1(λ
*

I , λ
*

T) = 1   and  λ*
I = 0  or F2(λ

*
I , λ

*
T) = 1,  (10)
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(11)

	 Due to non-linearity of the pair of equations (11), it is 
not easy to obtain the analytical solution for the interior equilib-
rium point resulting from the intersection of F1 and F2. However, 
numerically we were able to demonstrate existence and non-ex-
istence of the interior point (results not included).

Disease-free equilibrium point
The solutions λ*

I = 0 and λ*
T = 0 , in results (10) lead to the dis-

ease-free equilibrium given by
E0 = (Λ / μ, 0,0,0).
TB-state
The case  λ*

I = 0 and λ*
T ≠ 0  , lead to the TB-state given by
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HIV-state
The case   λ*

I ≠ 0 and λ*
T = 0  , lead to the HIV-state given by









+

−ΛΛ
= 0,0,

)(
)1(

,
0

0

0 II

I

T
I R

R
R

E
δµµ

 

Where 00 >







+







 Λ
=

I

I
IR

δµ
β

µ
.

Dual infection (full model)
	 The full dual infection model is complex to obtain solu-
tions in compact form. Simple numerical simulations are carried 
out in section 5, to provide insight in the transmission dynamics 
of dual infection.

Global stability
Theorem 4.1: The disease-free equilibrium of the HIV and TB 
dual-infection model (1), is globally asymptotically stable when-
ever R0 <1 and unstable when R0 >1.

We construct a Lyapunov function of the form
V(JS, JI , JT , JIT) = JS - JS0 - JS0 ln(JS / JS0) + JI + JT + JIT .

The time derivative of  V(JS, JI , JT , JIT) along the solution path 
yields

dV/dt = Λ - λIJS - λTJS - λITJS - JS0/JS(Λ - λIJS - λTJS - λITJS) 
+ λIJS - φTλTJI - (μ + δI)JI + λTJS - φIλIJT - (μ + δT)JT + φTλTJI + 
φIλIJT + λITJS - (μ + δIT)JIT

Evaluating the time derivative at the disease-free equilibrium 
level and we obtain
dV/dt = μJS0 - μJS - JS0 / JS(μJS0 - λIJS- λTJS - λITJS)   
- (μ + δI)JI - (μ + δT)JT - (μ + δIT)JIT ,

= - {μ(JS - JS0/JS) + κ(μ + δT)(1 - R0T)} - {κμ(1 - R0I)JI + κ(μ + δIT)
(1 - R0IT)JIT} ≤ 0

Provided R0I ≤ 1, R0T ≤ 1 and  R0IT ≤ 1.

If R0 < 1, 0=
•

V   implies JI = 0, JT  = 0 and JIT  = 0. It follows 

from system (1) that the largest invariant set where 0=
•

V  sat-
isfies JI = 0, JT  = 0, JIT  = 0, and JS = Λ/μ = JS0. By Lassalle’s 
invariance principle[22], the disease-free equilibrium is globally 
asymptotically stable.

Numerical simulation
	 In this section, we present numerical results to illus-
trate analytical results and to demonstrate results which could 
not be solved analytically, using published data from literature. 
We consider various scenarios to assess the impact of the infec-
tivity rates in the transmission dynamics of the co-epidemic. The 
following parameter values are used in the simulations (Table 1).



	 We consider five key modification parameters associ-
ated with co-infection (ηI,ηT,κ) and super-infection (φI, φT). We 
wish to address the question ``How does levels of infectivity 
of co-infected individuals affect the dynamics of HIV and TB 
epidemics?
	 Figures 1(a) and 1(b) present variation in the magni-
tudes of  ηI. Increasing the values of ηT we obtain drastic in-
crease in the prevalence of HIV to maximum levels and settle 
at different levels. The results show marked increase in HIV-TB 
co-infection prevalence, that remain for some time at high levels 
before reducing drastically to low levels and settle at a common 
endemic state.

Table 1: parameter values for simulation.
Parameters Units Values Citation
Λ People/year 0.29 [1]
δIT /year 0.5 [1]
δI /year 0.025 [21]
δT /year 0.01 [21]
βI - 0.5586 [6]
βT - 0.31025 [6]
ηI - 1 - 4 [10]
ηT - 1 - 1.6 [21]
φI - 1 - 4 Varied
φT - 1 - 4 Varied
μ /year 0.02 [21]
κ - 1 - 10 Varied

	 Increasing ηT (Figures 2(a) and 2(b)) on the other hand 
rapidly increases the prevalence of TB to the maximum level be-
fore reducing and settling at low levels. The prevalence of HIV-
TB drastically increases and settles at high levels for some time 
before drastically reducing and settling at low levels.

Figure 1: Variation of ηI with all other parameters fixed.
 Λ = 0,29, δIT = 0,5, βI =  0,5586, βT = 0,31025, δT = 0,03,  δT = 0,02, δI = 
0.01, βIT = 0,6,  φI= 1,1,  φT= 1,03.

Figure 2: Variation of  with all other parameters fixed.
Λ  = 0,29, δIT = 0,5, βI =  0,5586, βT = 0,31025, δT = 0,03, δT = 0,02, δ1  = 
0.01, βIT = 0,6, φI = 1,1, φT = 1,03.

Figure 3: (a) Variation of  and (b) variation of  with all other parameters 
fixed.
Λ = 0,29, δIT = 0,5, βI =  0,5586, βT = 0,31025, δT = 0,03, δT = 0,02, δ1  = 
0.01, βIT = 0,6, φI = 1,1, φT = 1,03.
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Figure 4: Variation of k to assess effects of simultaneous transmission 
of two pathogens.

	 These results confirm findings from other studies which 
indicate that the two pathogens exhibit a synergistic relationship 
that is, each pathogen exacerbates the progression of the oth-
er[16,23,24]. Increase effects on super-infection such as increased 
risk of TB infectives to HIV φI  or increased risk of HIV in-
fectives to TB φT  has the effect of reducing the prevalence of 
singly-infected populations and increasing the dually infected 
population (Figures 3(a) and 3(b)). The suggests that the dual 
infection prevalence is not sensitive to increased effects in si-
multaneous transmission of pathogens (Figure 4).

Discussion
	
	 A non-linear deterministic mathematical model of dual 
infection of HIV and TB is formulated and analysed. The aim of 
the study is to investigate the effects of simultaneous transmis-
sion of both HIV and TB pathogens on the disease dynamics. 
We assume a possibility of simultaneous transmission of both 
HIV and TB pathogens to susceptible individuals. We employ 
traditional analytical method of analysis to determine the steady 
states and their stability. The study showed that the disease-free 
equilibrium exists for all values of the reproduction number 
$R_0$ and is locally and globally asymptotically stable if R0 < 1 
and unstable if R0 >1. Numerical simulations were used to con-
firm analytical results. Analytically, we determined additional 
threshold parameters which govern super-infection. Our model 
was highly simplified but still led to a complex and very difficult 
problem to solve analytically. The symmetry of solution equa-
tions seem to suggest that techniques in advanced linear algebra 
(co-planar systems) or advanced vector calculus may provide 
insights conditions for existence of the interior solution (co-ex-
istence). Further studies are required to systematically compute 
the reproduction number for super-infection.

Acknowledgement: The authors are grateful to anonymous ref-
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the manuscript.
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