Antimicrobial Activity Studies from Poisonous Short Nosed Tripod Fish, *Triacanthus biaculeatus* (Bloch, 1786) from Visakhapatnam Coastal Waters, India

Jyothi, K², N.M. Krishna¹*, V. Govinda Rao¹ and S.Geetha³

1 Department of Marine Living Resources, College of Science and Technology, Andhra University, Visakhapatnam, Andhra Pradesh, India
2 Department of Botany, College of Science and Technology, Andhra University, Visakhapatnam, Andhra Pradesh, India
3 Department of Microbiology, College of Science and Technology, Andhra University, Visakhapatnam, Andhra Pradesh, India

*Corresponding authors: N.M. Krishna, Department of Marine Living Resources, College of Science and Technology, Andhra University, Visakhapatnam - 530003, Andhra Pradesh, India; Tel: 9912991299; E-mail: krishna.muddu217@gmail.com

Received Date: January 07, 2017
Accepted Date: January 20, 2017
Published Date: January 28, 2017

Abstract

An antimicrobial validatory screening of short nosed tripod fish *Triacanthus biaculeatus* (Bloch, 1786) collected from the Visakhapatnam coastal waters, India is done in such a way *T. biaculeatus* muscle extracts were subjected for antimicrobial assay. Antimicrobial screening assay was done in five bacterial pathogens viz., *Escherichia coli* (MTCC-443), *Salmonella typhi* (MTCC-421), *Pseudomonas aeruginosa* (MTCC-2295), *Vibrio cholera* (MTCC-459) and *Staphylococcus aureus* (MTCC-3160) using the standard well diffusion method. The results confirmed a positive test against most of the pathogens used. Maximum antimicrobial effect against *Vibrio cholera* of 3.8mm in diameter is reported. The present investigation has revealed that positive progresses in the fish (*T. biaculeatus*) muscle extracts against human pathogens.

Keywords: Antimicrobial activity; Pathogens; Short -nosed tripod fish; Visakhapatnam

Introduction

There is a growing interest in marine natural products or marine secondary metabolites⁹. Finding of bioactive compounds from fish have always been of great significant since several decades and it is much more essential to identify inventive natural products which might possess remarkable properties to treat various diseases. Of the natural products isolated from marine organisms¹⁰ only less than 1% has been examined so far for pharmacological activity¹¹. Much of studies are warranted to find antimicrobials in the present context of increasing need for novel drugs that can control new illness or resistant strains of microorganisms¹². There has been an extensive research showing that bioactive substances were identified and characterized from marine organisms showed promising results to treat human and animal diseases¹³. The thirst of natural antimicrobial therapeutics discovery and development is always in demand for pharmaceutical industries, and its vital significance is to escape the risk of resistance development by pathogenic microorganism¹⁴. This conquest of fish has been accomplished despite the fact that they possess both slower and less developed adaptive immune systems than that of higher vertebrates¹⁵. Due to the aquatic environment, fishes have distinctive anatomical and physical characteristics. Fish live in intimate contact with an environment containing both saprophytic and pathogenic microbes capable of digesting and degrading fish tissues. The slow adaptive immune response of fish makes innate immunity, which is fast acting and temperature independent¹⁶, the predominant system of fish host defense. This innate immune response is essential for the survival of this whole class of animals.

Antimicrobial activity in tissue extracts has been demonstrated in several fish species¹⁷ yet this activity seems to vary from one fish species to the other and can be specific.
Antimicrobial activity studies from poisonous

towards certain bacteria[8]. The secondary metabolites derived
from the various marine organisms till date, possess antimicro-
bial and anticancer properties, while some of them are under
clinical trials[10,11]. In the present study the muscle extract from
short nosed tripod fish T. biaculeatus was screened for its in vitro
activity against human pathogens.

Materials and Methods

Sample collection and preparation of extracts

Triacanthus biaculeatus (Bloch, 1786) samples
were collected from the fish landing center of Visakhapatnam
(Lat.11°29’N; Long. 79°46’E), India during the period of 2014.
Freshly collected samples were identified by based on Froese,
R., et al., Eds[12] and immediately washed to remove adhered
mud and other particles and brought to the laboratory in a frozen
condition. The extraction procedure was followed by modified
method of Chellaram[13]. 50 gms of chopped tissues samples
were placed on the solvent methanol and acetone separately
in the ratio of 1:3 (w/v) for 24 hrs at normal room temperature,
then extracts were filtered by What man filter paper No.1 and the
solvents were concentrated by rotary evaporator under reduced
pressure and temperature, the resultant residues were stored at
4ºC for further analysis.

Bacterial Pathogens used

Antimicrobial activity of T. biaculeatus was determined
against five bacterial strains viz, Escherichia coli (MTCC-443),
Salmonella typhi (MTCC-421), Pseudomonas aeruginosa
(MTCC-2295), Vibrio cholera (MTCC-459) and Staphylococ-
cus aureus (MTCC-3160).

In vitro antibacterial activity

The antibacterial activity was determined by Well Dil-
fusion Methods[14,15]. About 25 ml of molten Mueller Hinton agar
was poured into a sterile Petri plate. The plates were allowed
to solidify, after which 5 different species of pathogenic bac-
teria namely Escherichia coli, Salmonella typhi, Pseudomonas
aeruginosa, Vibrio cholera and Staphylococcus aureus were
transferred onto the plates and made lawn culture by using ster-
ile L-rod spreader. After five minutes setting of the bacteria,
the wells were made using sterile 5 mm cork borer. Wells were loaded
of extracts prepared by dissolving 1mg of crude extracts in 1
ml of distilled water. Streptomycin was used as positive control
and negative control was prepared using distilled water. Plates
were incubated for 24 hrs at 37ºC. Zone inhibition was recorded
in millimeters and three replicates were maintained.

Results and Discussion

Antimicrobial effect of the T. biaculeatus were tested
against, five pathogenic bacteria. The activity was measured in
terms of zone of inhibition and expressed in millimeter (mm). The spectrum of antibacterial activity in the fish muscle was
shown in given Table-1 and Figure-1.

The magnitude of zone of inhibition was V. cholera >
E. coli and S. typhi > P. aeruginosa > S. aureus. The maximum
zone of inhibition was observed against V. cholera which is about
3.8 mm in diameter. Whereas the inhibition zone measured for
Streptomycin was 3mm. This was followed by E. coli and S.
typhi (3 mm), P. aeruginosa (2 mm) and S. aureus (1 mm) com-
pared with the streptomycin inhibition zones of 3 mm, 1.6 mm, 2
mm and 2 mm respectively. The muscle extract of T. biaculeatus
showed a significant activity with regard to the Gram-positive
as well as Gram negative bacteria. The zone of inhibition values
of muscle extract of Tripod fish T. biaculeatus were much more
than the control (Streptomycin) tested and the inhibitory effect
of T. biaculeatus against five bacterial pathogens are given in
Table-1

Table-1: Metholic extract of Triacanthus biaculeatus against water
borne pathogens

<table>
<thead>
<tr>
<th>Bacterial Pathogens</th>
<th>Zone of Inhibition (mm)</th>
<th>Zone of Inhibition (mm) of Streptomycin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Staphylococcus aureus</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Escherichia coli</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Vibrio cholera</td>
<td>3.8</td>
<td>3</td>
</tr>
<tr>
<td>Pseudomonas aeruginosa</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Salmonella typhi</td>
<td>3</td>
<td>1.6</td>
</tr>
</tbody>
</table>

The first attempt to locate antimicrobial activity in ma-
rine organisms was initiated around 1950’s[16]. Since this time, a
large number of marine organisms from a wide range of phyla
have been screened for antimicrobial activity[17]. Many of these
organisms have antimicrobial properties, although most of the
antibacterial agents that have been isolated from marine sources
have not been active enough to complete with classical antimi-
crobial activity against microorganisms[18].

Fish is the earliest and the largest class vertebrate in
marine biota with its innate immune system being considered as
the predominant mechanism for host defense[19] which includes
excretion of antimicrobial peptides, polypeptides, non-classical complement activation, cytokine release, inflammation
and phagocytosis[20,21]. Precisely, fishes evolved several innate
immune mechanisms to defend microbial infection[20]. On the
other hand, fishes hold the credit of possessing rich protein

![Fig.1: Antibacterial Activity of T. biaculeatus](image)
Antimicrobial activity studies from poisonous sources. These marine proteins are not only correlated to the intact proteins, but also to the possibility of generating bioactive peptides[14]. In recent years, different toxins derived from marine sources have been identified as having potential antimicrobial activities. Precisely, fishes evolved several innate immune mechanisms to defend microbial infection[19]. On the other hand, fishes hold the credit of possessing rich protein sources. These marine proteins are not only correlated to the intact proteins, but also to the possibility of generating bioactive peptides[22]. Most of reported antimicrobial peptides typically have strong antimicrobial activity against a wide range of Gram-positive bacteria but very weak or no activity against Gram-negative bacteria, like mitomycin[23].

In the present study, muscle extract of *T. biaculeatus* showed considerable inhibitory activity against Gram-negative bacteria within short span of time. Hence, it is obvious that the secondary metabolites produced from the associated microorganisms could transport into the muscle tissue and hence exploitation of associated microorganisms could solve the supply problem of raw materials i.e., host organisms and hence the biodiversity of marine organisms could be conserved for the future benefits[24]. Interesting finding from the antimicrobial sensitivity of associated bacteria must play a role in host defense, and thus constitute a valuable source of immune competent effect or cells for in vitro analyses. However, majority of marine organisms are yet to be screened discover useful antibiotics. Epidermal secretory cells of fishes have been noted to be two types: secreting proteinaceous material and other mucus[24]. According to Boman, 1995 and Andreu, D., et al., 1998[25,26] most of the antimicrobial peptides kill bacteria by a common mechanism, which involves direct electrostatic interactions with negatively charged phospholipids on microbial cell membranes followed by physical disruption and solubilization. Fish contain serum and cellular interferon which possess anti-viral proteins (e.g. α-macroglobulin and other β-globulins) that inhibit the extra cellular proteases secreted by pathogens[27]. They added that number of relatively specific lytic molecules, like hydrolyse enzymes (Lysozyme, Chinease and Chitobiase) act on bacteria. Fish also contain lytic molecules, like hydrolase enzymes (Lysozyme, fibrinolytic agents and so on, after a series of clinical trials[28]).

The data of present study indicate that the antibacterial activity of the fish muscle may be due to the presence of the above said substances. The mode of action of muscle extract is yet to be determined but studies have proposed various killing mechanisms for fish derived antimicrobials such as cytoplasmic membrane disruption, pore or channel formation[11] and inhibition of cell wall and nucleic acid synthesis[32,33].

Conclusion

Based on the assay conducted and surveyed literatures we concluded that the *Triacanthus biaculeatus* has potential antimicrobial activity of many polar compounds particularly against *V. cholerae, E.coli* and *S.typhi*. This study is suggesting that many promising compounds which have potential pharmaceutical values from these untapped sources to be evaluated for curing many diseases. *T. biaculeatus* are underutilized for human usage and they can be explored for other pharmaceutical applications with sustainable conservation.

References

Antimicrobial activity studies from poisonous