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Abstract
	
	 Endothelial cells play remarkable roles in regulating vascular function in 
health and disease. Meanwhile, shear stress, which is created due to the friction of 
the flowing blood on the endothelium of the arterial wall, is critical for vascular 
homeostasis. Here, the shear stress patterns and its effect on gene expression and 
vascular function are reviewed.
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Introduction

	 Endothelial cells (ECs), which line the luminal surface 
of blood vessel, play remarkable roles in regulating vascular 
function in health and disease[1]. Most of the previous studies 
reveal that ECs control vascular tone, permeability, inflamma-
tion, and even the growth and regression of blood vessels[2-5]. 
Because ECs are mechanosensitive to both shear stress and cir-
cumferential strain from blood flow and blood pressure within 
the vascular system, it has been confirmed that ECs are essential 
to vascular homeostasis[1-5]. Specifically, ECs are known to be 
dysfunctional under pathology conditions, such as diabetes and 
atherosclerosis[6,7]. Therefore, endothelial dysfunction is often a 
result of altered vascular morphology and is a hallmark of many 
pathological and disease states, such as atherosclerosis, diabe-
tes, hypertension and inflammation. It is well known that ECs 
are continuously exposed to shear stress, which is created by the 
blood flow over the luminal surface of blood vessel[1,8]. In this re-
gards, the conception that shear stress can modulate EC function 
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by activating the mechanosensors, intracellular signaling, gene 
expression, cell morphology and structural remodeling, has been 
pointed out and reviewed by others[9-11]. The aim of this short 
review is to provide a brief summary of the current knowledge 
with a focus on the shear stress and its functional roles in endo-
thelial cell.

Shear stress and blood flow patterns 
	 Shear stress is the force per unit area created due to the 
friction of the flowing blood on the endothelium of the arterial 
wall. In general, blood flow may be divided into either lami-
nar or oscillatory shear flow[12]. The former is characterized by 
smooth streamlined flow, and the latter is characterized by areas 
of flow reversal[12,13]. Interestingly, the type of shear stress varies 
from region to region within the vasculature. For example, lami-
nar shear stress is usually found in straight arterial regions, such 
as thoracic aorta and abdominal aorta area. However, oscillatory 
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shear stress is found in branched or curved regions, such as aorta 
arch area, in which atherosclerosis occurred frequently (Figure 
1)[14,15].

Shear stress and vascular function

Shear stress regulates gene expression in ECs: In vivo, ECs 
are exposed to shear stress caused by blood flow over the en-
dothelial layer of blood vessels, which is a part of their normal 
physiological state[16]. In straight arterial regions with lami-
nar shear stress flow, various athero-protective genes (such as 
KLF2) are highly expressed. However, several pro-atherogenic 
genes (such as ICAM-1, VCAM-1, MCP-1 and E-selectin) are 
significantly decreased, thereby leading to stability and quies-
cence of the ECs[17]. In contrast, in regions with low and oscil-
latory flow, the athero-protective genes are suppressed, while 
the pro-atherogenic genes are highly expressed. As a result, the 
endothelium develops different phenotypes to contribute the 
site-specific susceptibility for the initiation and progression of 
atherosclerosis. Shear stress also has been shown to involve in 
regulating the inflammatory processes through modification of 
endothelial gene expression[18]. Using microarray assay of endo-
thelium under conditions of laminar or oscillatory shear stress, 
many groups have shown that oscillatory shear stress can result 
in pro-inflammatory gene expression in the vascular wall. How-
ever, laminar shear stress promotes an anti-inflammatory gene 
expression[10]. Up to date, the molecular mechanisms responsible 
for transducing shear stress and stretch into gene transcriptional 
changes are poorly understood.

Shear stress regulates eNOS activity in ECs: Nitric oxide (NO) 
plays a key role in endothelial function and vascular homeo-
stasis. It has been reported that shear stress could regulate NO 
production by phosphorylating endothelial nitric oxide synthase 
(eNOS) at Ser 1177, Ser 633, Ser 635 and Tyr 657[19-22]. Among 
them, Ser 1177, Ser 633, and Ser 635 are active sites, howev-
er, Tyr 657 is inhibitory site. For example, laminar shear stress 
promotes activity of Akt, which in turn phosphorylates eNOS 
at Ser1177, and resulting in eNOS activation and NO produc-

Cell Immunol Serum Biol    |   volume 3: issue 1www.ommegaonline.org 65

Functional Roles of Shear Stress

tion. Boo, et al. reported that shear stress stimulates phosphor-
ylation of eNOS at Ser635 by a PKA-dependent mechanism[23]. 
Chen, et al. also reported the laminar shear stress increases the 
eNOS-SIRT1association and eNOS deacetylation, as well as en-
hances the phosphorylation of eNOS at Ser-633 and Ser-1177 
via AMP-activated protein kinase (AMPK) pathway(1).

Shear stress regulates EC proliferation: Keeping ECs in qui-
escence state is required for vascular heath and homeostasis. 
Evidence from in vivo animal model show that increased EC 
proliferation is an early event of atherogenesis[24]. In vitro studies 
also show that laminar shear stress prevents ECs from entering S 
phase, resulting in most of cells are arrested in the G0/G1 phase. 
In contrast, cells exposed to oscillatory shear stress have acceler-
ated turnover rate with enhanced G0/G1–S transition[25]. 

Shear stress regulates EC migration: EC migration is import-
ant in many biological processes, including angiogenesis and 
development of vascular diseases. For example, migration of 
ECs is an essential part of the development of wound healing 
and atherosclerosis. Simmers, et al. reported that arterial shear 
stress regulates endothelial cell-directed migration and polarity 
in confluent monolayers[26]. Sprague, et al. shown that EC migra-
tion in wound healing is significantly enhanced by laminar shear 
stress by using the flow channel in vitro[27], whereas oscillatory 
flow has less effect on wound healing. The mechanisms on this 
process are complex, it is reported that the shear-induced lamel-
lipodia protrusion and focal adhesions remodeling may play key 
role in EC migration[28].
	 Taken together, shear stress can regulate the function of 
ECs by modulating the gene expression and phenotype of vascu-
lar ECs. Laminar shear stress activates signal transduction path-
ways and gene expression in ECs to suppress cell proliferation, 
inflammation, and atherosclerosis. In contrast, oscillating shear 
stress promotes atheroprone phenotype of ECs and increases EC 
proliferation, inflammation, leukocyte adhesion, thus contribut-
ing to atherogenesis[8,12,14,15,18,29].

Shear stress regulates endothelial cell morphology

Shear stress regulates cytoskeleton re-organization: Laminar 
shear stress alters the endothelial cells shape has been observed 
for many decades[13,30]. When look at the cell morphology it 
could be found that endothelial cells are elongated, aligned in 
areas of high laminar shear stress[13]. However, endothelial cells 
are randomly orientated at areas of low laminar or oscillatory 
shear stress. Recently, the conception that shear stress has effect 
on the endothelial cytoskeleton, especially the act in and the mi-
crotubule cytoskeletons, has been proved by many groups[28-31]. 
Act in filaments are arranged both centrally and peripherally in 
endothelial cells to form stress fibers. In normal cells, the mor-
phology of ECs were randomly aligned and uniformly polyg-
onal, whereas ECs under laminar shear stress condition were 
elongated from the typical cobblestone pattern to uniformly fusi 
form aligned in the direction similar in appearance to the cells 
grown under laminar shear stress (Figure 2). In this condition, 
the stress fibers become both thicker and longer, and run mainly 
in the longitudinal direction of the cell[32]. The mechanism how 
shear stress regulates the act in filaments re-organization, how-
ever, remains undefined.
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Shear stress regulates stress fiber anchoring to plasma mem-
brane: Stress fibers are associated with plasma membrane at the 
leading edge of cell, and this association plays an important role 
in cell-cell junction formation and cell mobility, and thus is crit-
ical for endothelial cell migration and angiogenesis[33,34]. For ex-
ample, stress fibers are found to link to the plasma membrane at 
cell junction or focal adhesion sites where they serve to promote 
strong attachment to the substratum. Stress fibers are reported 
to associate with and terminate at VE-cadherin-based cell–cell 
contacts[35]. It was reported that F-actin cytoskeleton directly 
or indirectly associates with focal adhesion complex through 
the F-actin binding tandem cortactin repeatsand the N-terminal 
acidic domain that interacts with the actin-related protein (Arp) 
2/3 complex[36]. However, the localization and distribution of 
stress fibers and focal adhesions seem to be affected by the pow-
er of the local fluid shear stress force[37]. 

Conclusions and Perspectives

	 Shear stress plays critical roles in vascular system by 
regulating EC’s functions via activity of signaling pathway, and 
thus, leading to genes expressions and functional responses. 
Many of these responses are just beginning to be understood, 
although some cues had been discovery by many colleagues, the 
mechanisms how cells response to shear stress and the details 
need to be further explored. On the other hand, laminar shear 
stress has been reported to change EC morphology and keep the 
cells in heath state, and indicated its athero-protective function. 
However, these genes, which are responsible for this process, are 
still unclear. So, we think discovery and investigations of these 
genes are likely to provide some surprises, and some works are 
ongoing in our lab at Guangxi Normal University. The results of 
such investigations will advance our understanding of the phys-
iological and pathological processes in vascular.
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