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Abstract
 Hypertension is a worldwide condition considered as the most important 
risk factor in the development of the cardiovascular disease. The contribution of the 
oxidative stress in its pathophysiology is a well known fact. Polyphenols are potent 
antioxidant compounds able to mitigate the damage produced by reactive oxygen 
species. Chlorogenic acids are polyphenols occurring in many dietary sources but 
primarily in green coffee extracts. Several studies have shown their antioxidant and 
anti-inflammatory properties. In the last decades there have been performed several 
clinical trials showing that the use of these compounds decrease the systolic and 
diastolic blood pressures probably by increasing the bioavailability of nitric oxide 
and improving the endothelium function. These properties could be the bases for 
supporting an important adjuvant therapy for the treatment of essential hypertension.
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Introduction

 Increasing body of evidence has involved the contribution of oxidative stress in the mechanism of essential hypertension[1].  
Accordingly, it has been demonstrated that patients with hypertension have increased production of reactive oxygen species (ROS)
[2,3] and lower levels of antioxidant species[4]. In addition, it has been found that ROS production is enhanced, redox-dependent 
signaling is amplified, and antioxidant bioactivity is reduced in the arteries of hypertensive humans[5], all accounting for a role of 
vascular oxidative stress in the pathogenesis of essential hypertension[6-8].
 The ROS play a physiological role in the homeostasis of the vascular wall by regulating the vascular tone and endothelial 
function[6,9]. This regulation is related to the activation/down-regulation of metabolic pathways modulated by low-to-moderate con-
centration of ROS[10]. However, when there is an imbalance between ROS production and antioxidant species the endothelium shifts 
its actions generating a reduction in the vasodilation of the wall and an increasing in the proinflammatory state and prothrombotic 
setting[11]. 
 In the vascular wall different sources of ROS coexist, which can be classified as enzymatic and nonenzymatic compounds. 
NADPH oxidase is the primary biochemical source of superoxide in the vascular endothelium. Nevertheless, there are other en-
zymes that contribute to the oxidative stress including xanthine oxidase, mitochondrial enzymes and uncoupled endothelial nitric 
oxide synthase (eNOS)[11].
 The main generator of ROS in the vasculature is NADPH oxidase (NOX) that produces superoxide anion by reducing 
molecular oxygen. This enzyme is up-regulated in hypertension primarily by molecular signs[11]. The superoxide anion can interact 
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with some molecules to form other free radicals or can react with 
biomolecules generating a disruption in the biological process-
es of the cell. For example, L-arginine and tetrahydrobiopterin 
(BH4) are two essential cofactors of eNOS. Their deficiency or 
oxidation (BH4) are associated with uncoupling of the L-argi-
nine-nitric oxide (NO) pathway resulting in decreased formation 
of NO and increased eNOS-mediated generation of superoxide 
instead. Furthermore, superoxide can combine with NO to form 
peroxynitrite that can also oxidize and destabilize eNOS to pro-
duce more superoxide[12,13] leading to a  positive feed-back re-
action. In turn, the xanthine oxidase enzyme catalyzes the last 
two steps of purine metabolism. During this reaction, oxygen is 
reduced to superoxide. There is evidence that in spontaneously 
hypertensive rats (SHR) the xanthine oxidase is up-regulated, 
thus leading to increased ROS production and increased vascu-
lar tone[14].
 The mitochondria are a major source of ROS. It has 
been studied that a part of the superoxide that is produced in 
the intermembrane space may be carried to the cytoplasm[15], 
being the complex I the main source of superoxide generated 
in the mammalian mitochondria. Normally, the other complexes 
do not produce significant levels of superoxide. Aside from this 
increased ROS source, it has been reported a reduction in anti-
oxidant enzymatic activity in patients with hypertension[16].
 There are some factors able to protect the tissues 
against oxidative stress, being NO one of the most important 
endogenous factors. The latter is known to play an important 
role as a key paracrine regulator of vascular tone. 
 Physiologically, NO inhibits leukocyte–endothelial 
cell adhesion, vascular smooth muscle cell (VSMC) prolifera-
tion and migration, and platelet aggregation, all contributing to 
maintain the health of the vascular wall. Therefore, taking into 
account the diverse beneficial effects of NO, it is conceivable 
that decreased NO bioavailability in the vasculature reduces va-
sodilatory capacity, thereby contributing to the development of 
hypertension. 
 Except the vasorelaxing and antiproliferative properties 
per se, NO plays an important role in antagonizing the effects of 
angiotensin II (AT-II), endothelins and ROS[11].
 NO not solely antagonizes the effects of AT-II on vas-
cular tone, cell growth, and renal sodium excretion, but also 
down-regulates the synthesis of angiotensin I converting en-
zyme (ACE) and AT1 receptors expression [1,11].
 It is noteworthy that exogenous antioxidants are also 
able to abrogate the effect of increased ROS in the vascular wall, 
thereby leading to beneficial effects. On this line, polyphenols 
can be used to decrease the oxidative stress. In the last decades 
there were studies demonstrating that these compounds have an-
tioxidant and anti-inflammatory properties. They can participate 
in the modulation of different cellular pathways to improve the 
endothelial function[17]. For example they can enhance the bio-
availability of NO by different mechanisms including activation 
of eNOS by the PI3-kinase/Akt pathway[18]. In addition, they can 
inhibit ROS generators enzymes such as NADPH and xanthine 
oxidase and increase the levels of glutathione[17]. On the other 
hand, there is also evidence that they can prevent the COX-de-
pendent formation of endothelium-derived contracting 
factors [19].
 Chlorogenic acids (CGAs) are one of the polyphenols 
that have gained interest during the last years. There are several 

studies that related CGAs properties with an improvement of 
glucose and insulin metabolism[20]. Knowing that hypertension 
is the most important risk factor in the development of cardio-
vascular diseases (CV)[21], it could represent a relevant target of 
reducing the cardiovascular risk; in agreement with several stud-
ies showing that the use of green coffee extracts (GCEs)causes 
decreased values of blood pressure in humans[22]. Those effects 
have been attributed to the polyphenols present in the GCEs. As 
CGAs are the major polyphenols present in coffee, this effect 
was attributed primarily to them. All of these properties could 
be probably explained by their capacity to improve the bioavail-
ability of nitric oxide and endothelial function. However it is im-
portant to considerer that even though there are not many studies 
about the possible negative effects of CGAs in humans, some 
experiments in rats have shown more incidence in carcinomic 
effects when treated with caffeic acid[23]. That fact probably indi-
cates that it should be considerer a balance between the positive 
and negative effects of these compounds.
 The aim of this chapter was to present an update of the 
studies supporting a role of CGAs to counteract the oxidative 
stress and herein the development of essential hypertension.

The Role of Chlorogenic Acid in the Essential Hypertension
 The CGAs are a family of polyphenols formed through 
a reaction of esterification between a trans-cinnamic acid and a 
quinic acid (Figure 1). They are found in many dietary sources 
such as fruits, vegetables and seed. The most commonly CGA 
found in coffee, is 5-O-caffeoylquinic acid, often called “chloro-
genic acid”, being one of the most important source of CGAs[24]. 
Moreover, due to the high consumption of coffee worldwide, 
CGAs are one of the major founts of polyphenols in the human 
diet.

Figure1: Molecular structure of chlorogenic acids. These compounds 
are formed through a reaction of esterification between a trans-cinnamic 
acid derivativeand a quinic acid. The capacity of resonance of the phe-
nol group allows them to be a free radical scavenger.

 Recently, there have been several studies that analyze 
the importance of these compounds in some diseases. One of the 
most interest areas is their possible protection in cardiovascular 
diseases. 
 There is evidence that the use of CGAs may improve 
the glucose metabolism and insulin sensitivity[20], thereby re-
ducing the relative risk of type 2 diabetes[25,26]. In addition, it 
probably improves the reduction of weight in obesity[27,28] and is 
related with the reduction of the relative risk of stroke in women 
patients[29,30]. 
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Mechanism of CGAs against Essential Hypertension 
 Like polyphenols CGAs have antioxidant and anti-in-
flammatory properties but their mechanism is not completely 
understood[22]. The total effect in the blood pressure is produced 
by a combination of various CGAs metabolites with different 
power of action[31]. With a common dietary intake of GCEs, 
CGAs are hydrolyzed in the small intestine to form the two prin-
cipal components of the CGAs which are trans-cinnamic acid 
(such as caffeic and ferulic acids) and quinic acids. Some studies 
have analyzed that the major percentage of CGAs present in an 
infusion of coffee are formed by a caffeoylquinic acids (86 %)
[32-44]. The hydroxylation takes place in the small intestine but 
only one third of the CGAs is absorbed there. The majority of 
the CGAs metabolites are absorbed in the large intestine after in-
teracting with the microflora where caffeic acid can be converted 
to ferulic acid by a transferase or be reduced to dihydrocaffeic 
acid[22].
 Studies in SHR suggested that the most powerful hypo-
tensive effect is produced by ferulic acid with an approximately 
9 times better decrease than caffeic acid and 17 times better de-
crease than quinic acid[31]. For that reason we will emphasize our 
analysis in the ferulic acids (FAs).
 The hypotensive effect of FAs could be probably ex-
plained from their antioxidant properties. They can act not solely 
as scavengers[35] but also as non-selective NOX antagonists[36,37], 
contributing  to a minor production of superoxide and less for-
mation of ROS. This condition will protect the eNOS from dis-
ruption and increase the bioavailability of NO[38], leading to an 
improvement in the endothelial function. In addition, there is ev-
idence that they can enhance acetylcholine induced endothelial 
dependent vasodilation[38] and inhibit the vascular proliferation 
of SMVC induced by angiotensin II[39].
 Caffeic acid shows similar properties of FAs like their 
regulation of some function of angiotensin II. In SHR it was 
analyzed that these effects were due to a blocking of metabol-
ic pathways involved in the process like JAK/STAT cascade or 
Ras/Raf signaling[40]. Additionally, it has been observed that caf-
feic acid could decrease the levels of Rac 1 GTPase, which can 
participate in the oxidative stress by contributing to generation 
of ROS[36,41].
 Furthermore, CGAs might interact with the renin-an-
giotensin aldosterone system by inhibiting ACE activity as 
shown both in vitro and in vivo[41-43].
 As polyphenols, the anti-inflammatory properties of 
CGAs could not be explained by their antioxidant properties. 
They probably will regulate some signaling pathways such 
as iκb/NF-κb or even interfere with the COX-2 activation. In 
a study of hepatic ischemia reperfusion injury in rats, CGAs 
shows protection properties. In addition they inhibited the trans-
location of the factors NF-κB and IRF-1 and induce the Nrf2[44]. 
 However this area has been less explored and not well 
elucidated yet but it may have importance in the long-term regu-
lation and could be an important therapeutic strategy for athero-
sclerotic disease[31,44]. Figure 2

Int J Food Nutr Sci      |     Volume 3: Issue 1

Figure 2: A flux diagram showing the molecular mechanisms of CGAs 
against essential hypertension. Abbreviations: CGAs (Chlorogenic ac-
ids), AT-1 (Angiotensin I), ACE (A-1 converter enzyme), AT-II (An-
giotensin II), Ach (Acetylcholine), eNOS (endothelial nitric oxide syn-
thase), NO (Nitric oxide), ROS (Reactive oxygen species).
  :inhibition
  :stimulation

Studies in Human Patients
 Numerous studies investigating the effect of CGAs in 
blood pressure have been performed however, in a recent re-
view of meta-analysis of randomized clinical trials (RCTs), only 
5 of them where found eligible and with duration of more than 4 
weeks. They demonstrated a significant reduction in the systol-
ic (MD: -4.31 mmHg) and diastolic (MD: -3.68 mmHg) blood 
pressures compared with the placebo/control group[46]. Patients 
selected in two RCTs were normotensive whereas in three of 
them they had mild essential hypertension. There were no ad-
verse effects reported in those studies.
 However these studies have some limitations that are 
important to expose. One of them is that all of them took place 
in Asia (four in Japan and one in India). This shows that it is 
unclear if the properties of CGAs can be present in occidental 
people.  In addition, the studies have different methodology, de-
sign, duration (ranges 4 to 26 weeks) and have small sample size 
which can probably biased the results[47-50].

Perspectives
 It seems that CGAs could have some beneficial effects 
on essential hypertension, based on their biological properties. 
There is a biomolecular basis that supports this theory and stud-
ies that have positive results. However, it is necessary to dimin-
ish the limitations of those studies in order to improve their eli-
gibility. For example, it is imperative to analyze these results in 
people with descent other than Asian, have a bigger sample size, 
increase the duration of the studies in order to investigate if it is 
really no adverse effects, determine the minimum effective dose 
of CGA which can reduce the blood pressure and unified the 
methodology and design of the studies in order to reduce the big 
heterogeneity that they have between each other.
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 Nonetheless, the use of CGA could be very useful in 
patients with incipient or low hypertension due to the molecular 
basis of their action that antagonizes with the remodeling mech-
anisms in blood vessels. This effect is more debatable in patients 
with high or long term hypertension. 
 Although there is a reduction in the blood pressure val-
ues, the impact of that reduction in the clinical practice is modest 
at best. It is likely that the use of CGA could be focused on the 
prevention rather than the treatment of established hypertension. 

Conclusion

 Cumulated evidence shows that oxidative stress par-
ticipates in the pathophysiology of the essential hypertension. 
In this context, is reasonable to propose that polyphenols such 
as CGAs could have protective effects in this disease. The use 
of CGAs has been related to a vasodilatory response probably 
mediated by an increase of NO bioavailability in the vascular 
wall. This leads to a modest decrease of the systolic and dia-
stolic blood pressure values. Although the results of RCTs are 
controversial due to the big heterogeneity in the designs between 
each other, it seems consensual that CGAs can reduce the blood 
pressure values.
 The clinical impact of this reduction is still uncertain 
but it probably could support a prevention strategy or as a com-
plement to the conventional established therapies for treatment 
of essential hypertension (adjunct therapy). 
 Finally, it is important to note that the molecular mech-
anisms involved in the vasodilatory response are not elucidat-
ed yet and there are probably more molecular pathways able to 
participate in the antioxidant function. For example, the regula-
tion of the metabolic Keap1/Nrf2 pathway which is activated in 
low-to-moderated ROS concentration, thus giving rise to a very 
important target of study because it promotes the antioxidant re-
sponse cell. As CGAs acts as free radical scavengers, they could 
decrease the concentration of ROS and indirectly activate this 
pathway.
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