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Abstract
The mammalian target of rapamycin (mTOR) is a signaling network that func-
tions to regulate muscle protein synthesis (MPS). The effects of leucine and 
phosphatidic acid (PA) availability and growth factors such as insulin and in-
sulin-like growth factor 1 (IGF-1) can up-regulate this signaling pathway and 
increase the initiation of protein translation necessary for MPS. mTORC1 is 
known to be translocated to the lysosome where it is subsequently activated 
by the Rheb and leucine-Ragulator/Rag GTPase pathways and human vacuo-
lar protein sorting 34 (hVps34)-PA axis. The diacyl-glycerophospholipid, PA, 
is suggested to act as an intracellular lipid second messenger that mediates 
cell signaling activity. PA is synthesized by various classes of enzymes such 
as phospholipase D (PLD) and directly activates mTORC1 by binding to the 
FKBP12-rapamycin-binding (FRB) domain of mTORC1. Another alternative 
mechanism through which PA supposedly promotes activation of mTORC1 
may also be through the extracellular regulated kinase (ERK) signaling path-
way. This brief review will highlight the mechanisms of action involved in 
MPS due to mTORC1 activation resulting from leucine and PA availability.
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PI3K/Akt/mTOR Signaling and Muscle Protein 
Synthesis section:

	 The mammalian target of rapamycin (mTOR) is an in-
tegrative signaling pathway that mediates various intracellular 
processes in skeletal muscle. It has been clearly established that 
the intracellular mTOR signaling pathway has an essential role 
in regulating muscle protein synthesis (MPS)[1-5]. As can be seen 
in Figure 1,stimuli such as the availability of the branched-chain 
amino acid (BCAA) leucine, the diacyl-glycerophospholipid, 
phosphatidic acid (PA), and heightened mitogenic activity im-
posed by insulin and insulin-like growth factor 1 (IGF-1) can ac-
tivate mTOR signaling. Increased mTOR signaling can then lead 
to increases in the initiation of protein translation and subsequent 
MPS. Within the mTOR signaling pathway, insulin and IGF-1 
bind to their respective receptors, which then triggers the acti-
vation of various kinases such as phosphatidylinositol-3 kinase 
(PI3K)[6]. The activated PI3K then phosphorylates and forms 
the membrane phospholipid, phosphatidylinositol- 3,4,5-tri-
phosphate (PIP3), which opens a lipid-binding membrane site 
for effector protein kinase B (Akt)[6]. Akt signaling has a range 
of cellular functions such as the modulation of glycolysis and 
the regulation of both phosphofructokinase (PFK) activity and 
gene transcription through the inactivation of the fork head box 
O (FOXO) transcription factors; these factors function within 
skeletal muscle atrophy-related signaling pathways[1,7]. 

Figure 1: Comprehensive pathway highlighting mTORC1 and mTORC2 com-
plexes and the role that PA, leucine, AMPK pathway and growth the factors, 
IGF-1 and insulin, play in regulating mRNA translation and cell growth via sig-
nal transduction. Figure modified from[20].

	 Figure 1 also illustrates that the activation of mTOR re-
sults in the phosphorylation of other downstream intermediates 
such as eukaryotic initiation factor 4E-binding protein 1 (4E-
BP1) and the phosphorylated ribosomal protein S6 (p70S6K)
[5,8]. 4E-BP1 is an inhibitor of the mRNA cap-binding protein 
eIF4E[5,8-10]. The phosphorylation of 4E-BP1 induces the release 
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of eIF4E and consequently enables the binding with a second 
initiation factor eIF4G[10-12]. The mTOR-mediated phosphoryla-
tion of 4E-BP1 results in the recruitment of the eIF4G scaffold 
onto the 5’ strand end of muscle-specific mRNA transcripts. This 
multi-protein eIF4F complex functions to assist in the binding of 
mRNA towards the 40S ribosomal subunit[8,9], and subsequently 
initiation protein translation and MPS[11-14].
	 The mTOR pathway also activates p70S6K, which then 
phosphorylates its effector ribosomal protein S6 (rpS6) that can 
assist in the enhancement of protein translation from template 
mRNA[5,8,10,15]. The activation of p70S6K, and the subsequent 
phosphorylation of rpS6, can induce enhanced translation of mR-
NAs containing the 5’ terminal oligopyrimidine tract (5’-TOP) 
(encoding elongation factors as well as ribosomal proteins. This 
process leads to increasing protein translation capacity[5,10,11]. 
In addition, the activation of p70S6K assists in bringing rpS6 
in closer proximity towards the eIFs (eukaryotic initiation fac-
tors) and mRNA[11]. The active p70S6K can also target eIF4B, 
which favors its binding onto eIF4A. This can increase the he-
licase activity of eIF4A and provide an additional stimulus for 
the increasing MPS[12,13].Therefore, the inhibition of this protein 
kinase within the mTOR pathway would cause a decrease in the 
rate of MPS[16].

mTORC1 mechanisms of action section:
	 mTOR is known to exist in two distinct multi-protein 
complexes, mTOR complex 1 (mTORC1) and mTOR complex 
2 (mTORC2), which are known to differ in their subunit com-
position, sensitivity to rapamycin, and cell signaling activity[4,17]. 
As seen in Figure 1, both of these complexes contain mTOR and 
mLST8; however, they are different in that mTORC1 contains 
the regulatory-associated protein of mTOR (raptor), where-
as mTORC2 contains rapamycin-associated protein of mTOR 
(rictor)[18]. With respect to this composition, mTORC1 is highly 
sensitive to rapamycin whereas mTORC2 is not. mTORC1 ac-
tivity is regulated by the modulation of the tumor suppressor 
tuberous sclerosis complex 1/2 activity (TSC 1/2)[17,18]. Figure 
1 illustrates this complex to be an active dimer that is purposed 
to limit mTORC1 signaling through the activity of guanidine 
trip-phosphatase (GTPase) enzymes. These proteins function to 
split a phosphate from GTP to yield GDP. Therefore, the TSC 
1/2 complex is known to negatively regulate mTORC1 activity 
by converting the GTPase protein Rheb (Ras homolog enriched 
in brain) into its inactive GDP-bound state[17,19]. Thus, the GT-
Pase activity of Rheb is highly governed by the TSC 1/2. More-
over, when Rheb is in its active GTP-bound state, it translocates 
to the lysosome where mTORC1 is activated (Figure 1)[18]. 
	 Insulin and IGF-1, are known to repress TSC 1/2 com-
plex activity and allow for the activation of mTORC1[19]. The 
Akt-induced phosphorylation of mTOR can lead to the inhibi-
tion of the tumor sclerosis complex 2 (TSC2)[3]. When Akt phos-
phorylates TSC2, it leads to the cytosolic anchoring protein 14-
3-3 degrading the TSC 1/2 complex[3]. This inactivates the GAP 
activity of TSC2 and represses the hydrolysis of Rheb-GTP, 
allowing mTORC1 activity to continue[3]. Accordingly, Akt 
can also activate the substrate known asproline-rich Akt sub-
strate of 40 kDa (PRAS40); upon activation PRAS40 translo-
cates away from the Raptor protein located within the mTORC1 
complex[20]. PRAS40 functions as a repressor of activation by 
preventing Raptor from recruiting the downstream effectors of 

mTORC1[21,22]. A study observed that the removal of raptor in 
vitro could minimize the phosphorylation levels of the down-
stream targets of mTORC1[14]. Moreover, the raptor protein may 
be significant in mediating the binding of the substrates 4E-BP1 
and p70S6K to the mTORC1 complex[14].

Effect of leucine on mTORC1 signaling section:
	 Leucine mediates mTORC1 signaling through the asso-
ciation with the Rag GTPases, and functions to bind the Raptor 
subunit of mTORC1 in an amino acid-dependent manner. The 
Rag GTPases (novel family of four small GTPases, A-D) are 
known as constitutive heterodimers through which depletion of 
any Rag heterodimer can inhibit mTORC1 signaling[23]. Further-
more, evidence seems to suggest that leucine can promote the 
binding of Raptor to the Rag heterodimer and Ragulator com-
plex and assist in the translocation of mTORC1 towards the ly-
sosome. Rheb is located at the lysosome; therefore, this would 
consequently allow for mTORC1 signaling[23,24]. The Ragulator 
complex is known as a trimeric protein complex that is com-
prised of p14, p18 and MP1 (recently now known as Lyosomal 
adaptor and MAPK and mTOR activator of LAMTOR 1-3). In 
the presence of leucine, these Rag GTPases become active with 
the Ragulator complex and bind mTORC1 and subsequently 
translocate this protein onto the lysosome for subsequent inte-
grative activation with GTP-loaded Rheb. 
	 Upon entry into the cell, it has been proposed that leu-
cyl-tRNA (LRS) can directly bind leucine with the Rag GTPases 
(in particular RagD) which forms the Rag GTPase complex for 
stimulation of mTORC1 translocation to the lysosome[25]. In-
terestingly, these authors also found that the inhibition of LRS 
prevented the activation of mTORC1, even with leucine avail-
ability. This highlights the possibility of leucine/LRS activation 
of GTP activity upon GTPase RagD and subsequent lysosomal 
recruitment for mTORC1 activation[24-26]. According to the liter-
ature, another study proposed that the process of glutaminolysis 
could allow for the leucine-dependent activation of the RagB 
heterodimer[27]. Glutaminolysis is defined as the conversion of 
glutamine into alpha-ketoglutarate (alphaKG), which is cata-
lyzed by the enzyme glutamine dehydrogenase (GDH). Further-
more, leucine is allegedly proposed to allosterically assist in the 
activation of GDH in order to convert glutamine into alpha KG 
for the Rag heterodimer loading phase to be activated[27]. 
	 Leucine availability may also help facilitate the disso-
ciation of the TSC 1/2 complex from mTOR, which may further 
raise its activity level[28-30]. Furthermore, essential amino acids 
such as leucine can up-regulate the activity of mTOR as well 
as its downstream effectors p70S6K and 4E-BP1 in order to 
maximize intracellular anabolic responses within skeletal mus-
cle. According to the literature, supplementation of leucine is 
shown to augment the activation of mTOR, its downstream tar-
get p70S6K, the phosphorylation of IRS-1, and a decrease in 
insulin-induced PI3K activity in skeletal muscle of humans[31]. It 
is also known that leucine mediates mTORC1 signaling through 
the association with the Rag GTPases, which function to bind 
the raptor subunit of mTORC1 in an amino acid-dependent 
manner to further promote mTORC1 interaction with activat-
ed Rheb-GTP[23]. Furthermore, evidence seems to show that 
leucine ingestion can also mechanistically promote the binding 
of raptor to the Rag heterodimer and assist in the translocation 
of mTORC1 towards Rheb, through which this association can 
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augment mTORC1 signaling[23]. 
	 With respect to nutrient availability, leucine functions 
as a signaling molecule that can directly activate mTORC1 in 
an Akt-independent manner. As can be seen in Figure 2, leucine 
can be transported into the cell by the membrane-bound recep-
tor SLC7A5 (ASC) coupled with SLC3A2 (LAT1/CD98); this 
process also requires the concomitant active extracellular trans-
portation of glutamine[32,33]. This presents clear evidence of the 
significance behind glutamine for leucine-induced activation of 
mTORC1. Accordingly, this may explain why glutamine is the 
most abundant free amino acid within the body, as well as why it 
is primarily contained within the skeletal muscle[32]. Intracellular 
leucine homeostasis and the rate of cellular uptake is coupled 
with transporters such as the system L and A transporter (LAT1 
and SNAT2, respectively) and highly-correlated with mTORC1 
activation[32]. Figure 2 illustrates that these transporters primar-
ily function to transport extracellular leucine in exchange for 
intracellular glutamine. The LAT1 transporter couples with the 
glycoprotein CD98 alongside the active sodium-linked SNAT2 
transporter. SNAT2 functions primarily to regulate glutamine 
levels within the muscle. The proposed mechanism of action 
is that LAT1 expels glutamine in exchange for the uptake of 
leucine, whereas SNAT2 continues to maintain high intracellu-
lar glutamine concentrations in order to continue the ability of 
LAT1 to actively uptake leucine into the cell (Figure 2)[32,34].

Figure 2: Amino acid transporters for leucine and glutamine, with the coupled 
SNAT2/LAT1 system. Figure modified from [32].

Effect of phosphatidic acid on mTORC1 signaling section:
	 Phosphatidic acid (PA) is suggested to act as an in-
tracellular lipid second messenger which mediates protein 
signaling activity. PA is also known as a precursor for the bio-
synthesis of other lipids and is also a major constituent of cell 
membranes[35]. Dietary food sources such as cabbages, radish 
leaves, and the Mallotus japonicas, a Japanese edible herb, is 
known to be rich in PA[36]. Several studies have presented obser-
vations showing that the stimulation of cells with exogenous ad-
ministration of PA, or over expression of enzymes that produce 
PA, can induce increases in mTORC1 activity[12,19,37-39]. During 
in vitro conditions, PA is also known to associate with the 
FKBP12-rapamycin-binding (FRB) domain of mTORC1[40,41]. 
A competition between PA and FKBP12-rapamycin has been 
noted for FRB binding, which confirms that elevated levels of 
intracellular PA can activate mTORC1 signaling in this fashion 

[42, 43]. As seen in Figure 3, PA is synthesized by various classes of 
enzymes such as phospholipase D (PLD), lysophosphatidic acid 
acyltransferases (LPAAT), and diacylglycerol kinases (DAGKs)
[42,43]. PLD is known to synthesize PA from phosphatidylcho-
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line (PC), whereas DAGKs synthesize PA from diacylglycerol 
(DAG) (Figure 3)[44].

Figure 3: Simplistic overview of the lipids and enzymatic pathways that produce 
PA and eventually activate mTORC1. Figure modified from[44].

	 Figure 3 also highlights that DAGK is an enzyme that 
phosphorylates DAG to produce PA. It has been noted that the 
over expression of the DAGK-Z isoform can induce mTORC1 
signaling, but can be inhibited when the PA binding domain of 
FRB on mTORC1 is mutated[44]. Researchers have found that 
mechanical stimulation could induce an increase in PA and 
mTOR signaling due to increases in DAG and DAGK-Ζ isoform 
activity[45]. This led the authors to suggest that the over expres-
sion of DGK-Z may be sufficient to induce MPS, independent of 
PLD activity. The LPAATs are another potential mediator of PA 
production and mTORC1 signaling activity in skeletal muscle 
(Figure 3), as these enzymes function to catalyze the acylation of 
LPA in order to form PA[46]. The over expression of the LPAAT 
enzyme can induce mTORC1 signaling and may highlight po-
tential roles in mediating PA and mTORC1 activity [39]. 
	 There are two mammalian isoforms of PLD (PLD 1 and 
2), through which PLD1 is known to be a Rheb effector (Figure 
4). PLD1 is associated with PA and the TSC 1/2 complex-Rheb 
complex within the mTORC1 pathway[41]. In accordance to the 
regulation of mTORC1 signaling, it has been shown that the 
over expression of PLD1 was associated with an increase in 
mTORC1 activity[42]. This was further confirmed by an opposite 
effect noticed following siRNA-mediated knockdown of PLD1. 
This suggests that PLD1-derived PA may promote the regula-
tion of mTORC1 signaling. According to researchers, the over 
expression of PLD1 was found to be associated with a decrease 
in the expression of the E3 ligase atrophic genes, atrogin-1 and 
MuRF1, thereby suggesting another mechanistic pathway of 
convergence[47]. Moreover, this over expression of PLD1/PA 
and down-regulation in the atrophic-related genes may be due to 
Akt-induced activation by mTORC2 activation[6,40,48]. These find-
ings highlight the suggestion that PLD1-derived PA may activate 
mTORC1 and also mediate the inhibition of proteolysis within 
the ubiquitin proteasome pathway by activating mTORC2 and 
subsequent Akt phosphorylation. Furthermore, PLD1 is suggest-
ed to be required for mTORC1 activity through the interaction 
with Rheb in a GTP-dependent manner with amino acid avail-
ability[49]. It is important to note that since PA is a direct activator 
of mTORC1 activity due to its ability to bind the FRB domain, 
this interaction is highly contingent upon the state of Rheb[50].
	 Moreover, as seen in Figure 4, MPS may be induced 
by increases in PA levels, which may occur through a PLD-de-
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pendent mechanistic pathway[38,44,51] (Figure 4). With respect to 
the mechanism of action behind mTORC1 activation, it was re-
cently reported that the Ras family of GTPases, RalA, was also 
required for amino acid induction of mTORC1 activity[52,53]. 
Moreover, RalA is also known to be constitutively associated 
with PLD1, which consequently demonstrates an importance of 
PA. Although RalA does not directly activate PLD1, this GT-
Pase protein is known to stimulate the association of PLD1 with 
ADP-ribosylation factor (ARF) family GTPases. Consequent-
ly, this leads to an increase in PLD1 activity[54-56]. It has also 
been suggested that GTP-loaded Rheb also has an association 
with PLD1 activity, which strengthens the molecular pathways 
underlying mTORC1 translocation. As illustrated in Figure 4, 
leucine may also work through a class 3 PI3K receptor known 
as human vacuolar protein sorting 34 (hVps34), upstream of 
mTORC1 parallel to the pathway of the Rag GTPase/Ragulator 
complex[43]. This receptor mediates amino acid availability up-
stream of mTORC1 through which the main product of hVps34 
catalysis is PI3P[43]. Furthermore, PI3P is alleged to then bind 
the PX domains that are present within the signaling proteins 
such as PLD1. Moreover, this suggests that leucine can stimulate 
mTORC1 translocation to the lysosome to be activated by mito-
gen-activated Rheb, which is mediated by the parallel pathways 
of the hVps34 and the Rag-Ragulator complex (Figure 4)[41]. 

Figure 4: A proposed model highlighting parallel pathways for leucine- and 
PA-induced activation of mTORC1 and the subsequent effects of MPS.In ad-
dition, outside stimuli such as insulin and IGF-1 can up-regulate activity of the 
upstream efforts of mTOR, which may assist in elevating mTORC1 activity. 
Figure modified from [41].

	 Interestingly, another alternative mechanism through 
which PA allegedly promotes activation of mTORC1 may also 
be through the ERK signaling pathway[18]. Various studies have 
shown that PA binds activates the Raf protein, an upstream me-
diator of ERK 1/2. This process then causes ERK 1/2 to phos-
phorylate its downstream effector, p90RSK, thereby negatively 
inhibiting TSC 1/2 and increasing mTORC1 activity. Further-
more, the availability of PA to activate ERK 1/2 and mTORC1 
may be through the hydrolysis of PA to LPA by phospholipases 
(such as phospholipase A). This process could then lead to 
subsequent binding of LPA to endothelial differentiation gene 
(EDG) receptors (EDG-2)[18]. The binding to EDG-2 then leads 
into the activation of the ERK signaling pathway, which may 
ultimately up-regulate mTORC1 activity. 

Summary

	 The intricacy of the complex mTORC1 signaling 
pathway constitutes a greater need for continual scientific in-
vestigation. Several mechanisms of action have been discussed 
within this review that highlight the converging signals upon 
mTORC1 such as insulin, IGF-1, leucine, and PA that can lead 
to increased rate of protein translation necessary for the process 
of MPS. In contrast to the well-acknowledged PI3K/Akt signal-
ing cascade, recent literature has begun to elucidate the signif-
icance of the PLD/PA axis for mTORC1 activation. Recently, 
there is evidence showing that mTORC1 activation is dependent 
upon the translocation to the lysosome where Rheb is located. 
Furthermore, there seems to be a heightened role in levels of 
PA directly acting upon mTORC1 by the FRB domain. Further-
more, recent results also indicate that the hVps34/PI3P/PLD1 
pathway presents a parallel signaling mechanism alongside the 
well-established Rag/Ragulator complex for ultimately activat-
ing mTORC1. However, there is presently a lack of understand-
ing as to how leucine directly interacts with hVps34 and the Rag 
GTPases. Therefore, further explorations into the roles that leu-
cine and PA have on mTORC1 activity and MPS are warranted. 
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