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Introduction

	 Melanoma is one of the most lethal and aggressive forms of skin cancer and has historically been a treatment-resistant ma-
lignancy. However, in recent years improved understanding of the molecular nature of melanoma and the interaction of melanoma 
cells with the immune system has resulted in multiple new immunotherapeutic strategies, of which immune checkpoint inhibitors 
are the most advanced[1]. 
	 Immunotherapy aims to generate or enhance T-cell responses against tumor cells. Activation of naive T-cells requires 
two signals: T-cell Receptor (TCR) signaling and co-stimulatory signaling (Figure 1). The first signal is provided by binding of an 
antigenic peptide/major Histocompatibility complex on the surface of an Antigen-Presenting Cell (APC) to the T-cell receptor. Mel-
anoma is characterized by a high rate of ultraviolet induced mutations. These mutations lead to changes in protein coding sequence, 
which the immune system recognizes as altered proteins epitopes, also known as neoantigens[2,3]. 
	 A second co-stimulatory interaction between the T-cell and APC can modulate TCR signaling positively or negatively. 
These co-stimulatory and co-inhibitory molecules, expressed on the surface of the T-cell, mediate immune checkpoints[4]. Under 
normal physiological conditions, immune checkpoint pathways maintain self-tolerance and limit collateral tissue damage during 
anti-microbial immune responses. Cancer can exploit inhibitory immune checkpoints to evade tumor destruction.
	 The most clinically advanced checkpoint inhibitors to date are blocking monoclonal antibodies that target the CTLA-4 
and PD-1 pathways. CTLA-4 is a Transmembrane protein on T-cells that competes with another receptor on T-cells, CD28, for the 
same ligands. These ligands, CD80 (also known as B7.1) and CD86 (also known as B7.2) are expressed on APCs. Binding between 
CD80/86 and CD28 stimulates T-cell activation, while binding to CTLA-4 inhibits T-cell activation (Figure 1)[5,6]. Therefore, the 
expression level of CTLA-4 dictates the threshold of T-cell activation by APCs, and CTLA-4 inhibitors promote T-cell activation 
by blocking the binding between CTLA-4 and B7. Like CTLA-4, PD-1 is a co-inhibitory surface receptor expressed on T-cells. The 
PD-1 ligands PD-L1 and PD-L2 are expressed in a wide variety of peripheral tissues, including tumors. Upon binding to its ligands, 
PD-1 negatively regulates the function of activated T-cells. PD-L1 expression in the tumor microenvironment is one important 
mechanism of tumor-mediated immune evasion (Figure 1)[7,8]. PD-1 inhibitors block the binding between PD-1 and PD-L1/PD-L2, 
whereas PD-L1 inhibitors more selectively block the interactions between PD-L1 and PD-1/CD80. Both prevent T-cell exhaustion 
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Abstract
	 Immune checkpoint blockade via inhibition of Cytotoxic T Lymphocyte An-
tigen 4 (CTLA-4) and Programmed Cell Death 1 Receptor (PD-1) has demonstrated 
significant clinical benefits in treating melanoma and other types of cancers and has 
since become a very progressive field in cancer research. Despite durable tumor regres-
sion observed in some patients, response rates to CTLA-4 and PD-1 still have room 
for improvement. There are many additional immune modulatory pathways, including 
inhibitory molecules expressed on tumor cells and secretion of pro-inflammatory cyto-
kines by lymphatic cells that could potentially be targeted to enhance the anti-tumor re-
sponses to PD-1 and CTLA-4. Here, we review the current status of CTLA-4 and PD-1 
inhibitors in the treatment of melanoma and several therapeutic targets and strategies 
that may synergize with checkpoint blockades.
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and PD-1 and PD-L1 inhibitors have demonstrated comparable 
clinical efficacy[9]. In summary, CTLA-4 primarily suppresses 
the activation of naive T-cells by APCs while PD-1 inhibits pre-
viously-activated effector T-cells[10,11]. This is thought to explain 
why PD-1 inhibitors have a lower toxicity profile compared 
to CTLA-4 inhibitors. Although CTLA-4 and PD-1 inhibitors 
are currently the most promising cancer immunotherapy treat-
ment options, most melanoma patients still do not respond to 
these therapies. In this review, we discuss progress in the use 
of CTLA-4 and PD-1 inhibitors for the treatment of melanoma, 
and different mechanisms and therapeutic methods that could 
potentially improve the efficacy of CTLA-4 and PD-1 inhibitors. 
 
Current Status of CTLA-4 and PD-1 Inhibitors
	 There are three checkpoint blockade agents that have 
been approved by the FDA for the treatment of advanced mela-
noma: Ipilimumab (antibody against CTLA-4), Pembrolizumab 
and Nivolumab (antibodies against PD-1). Compared to tradi-
tional targeted therapies, such as BRAF inhibitors, checkpoint 
blockade offers more durable responses but with lower response 
rates. A recently published meta-analysis of survival data fol-
lowing Ipilimumab therapy reported that Ipilimumab extended 
overall survival from approximately 8 months to 11.4 months 
in patients with metastatic melanoma. A plateau survival rate 
of 21% was reached around year 3, with follow-up of up to 10 
years[12].
	 Compared to Ipilimumab, PD-1 inhibitors elicit higher 
response rates with fewer side effects[13,14]. In a recently published 
phase III study comparing Pembrolizumab versus Ipilimumab in 
the treatment of advanced melanoma[13], the estimated 12-month 
survival rates were 74.1% for Pembrolizumab administered ev-
ery 2 weeks at the dose of 10 mg/kg, 68.4% for Pembrolizumab 
administered every 3 weeks at the dose of 10mg/kg, and 58.2% 

for Ipilimumab administered every 3 weeks at the dose of 3mg/
kg. The response rates for Pembrolizumab administered every 2 
weeks and 3 weeks were 33.7% and 32.9% respectively, signifi-
cantly higher than the response rate for Ipilimumab administered 
every 3 weeks (11.9%). Rates of grade 3 - 5 adverse events in 
the two Pembrolizumab groups (13.3% in the 2-week group and 
10.1% in the 3-week group) were lower than the rate in the Ip-
ilimumab group (19.9%). It should be noted that clinical trials 
for Pembrolizumab and Nivolumab started 6 years later than the 
trials for Ipilimumab and clinical studies with longer follow-up 
are needed to fully evaluate the efficacy of PD-1 inhibitors.
	 The non-redundant mechanisms of CTLA-4 and PD-1 
provide a rationale for combination of CTLA-4 and PD-1 in-
hibitors. Several clinical studies have shown superior response 
rates and progression free survival with combined Ipilimumab 
and Nivolumab treatment[15-17]. For example, the phase III study 
testing Nivolumab and Ipilimumab combined therapy in patients 
with metastatic melanoma reported an objective response rate of 
43.7% in the Nivolumab group (3mg/kg administered every 2 
weeks), 19.0% in Ipilimumab group (3mg/kg administered ev-
ery 3 weeks) and 53.6% in the combined Nivolumab Ipilimumab 
group (4 doses of 1 mg/kg Nivolumab plus 3 mg/kg Ipilimumab 
administered every 3 weeks, followed by 3 mg/kg Nivolumab 
administered every two weeks)[17]. The median progression-free 
survival for the combined therapy was 11.5 months, compared 
to 2.9 months for Ipilimumab, and 6.9 months for Nivolumab. It 
should be noted that in patients with high PD-L1 expression on 
tumor cells, the median progression-free survival was the same 
in the combined therapy group and in the Nivolumab group (14 
months), but in patients with tumors that expressed a low level 
of PD-L1, progression-free survival was longer in the combined 
therapy group (11.2 months vs. 5.3 months). This suggests that 
PD-L1 expression in the tumor is associated with but does not 
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Figure 1: Anti-tumor immunity. The immune response against melanoma begins with the uptake of tumor-associated antigens by APCs, which 
then migrate to lymphatic tissues to activate naive T-cells. Two signals are required for T-cell activation: antigen presentation and co-stimulatory 
signaling. In this process, CTLA-4 competes with the co-stimulatory molecule CD28 for ligands CD80 and CD86, inhibiting naive T-cell acti-
vation. Blocking monoclonal antibodies against CTLA-4 prevent binding of CTLA-4 to its ligands, allowing T-cell activation. Activated T-cells 
secrete type I interferons that can activate other immune cells including natural killer cells and macrophages. Effector T-cells subsequently traffic 
to and infiltrate tumors, destroying cancer cells. During this stage, PD-L1 expressed on tumor and stromal cells bind PD-1 receptors on T-cells. 
PD-1 signaling inhibits T-cells. In addition, interferon-γ secreted by tumor infiltrating lymphocytes upregulates PD-L1 expression on tumor cells, 
suppressing T-cell responses. PD-1 inhibitors reinvigorate exhausted T-cells by blocking the interaction between PD-L1 and PD-1.
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perfectly predict PD-1 inhibitor efficacy. Grade 3 or 4 adverse 
events (grade 3 or 4) were much more frequent in the combined 
therapy group than in the two monotherapy groups (55.0% in the 
combined group, 16.3% in the Nivolumab group and 27.3% in 
the Ipilimumab group). Higher rates of adverse events resulting 
from the combined CTLA-4 and PD-1 therapies were observed 
in all studies, raising safety concerns regarding combined thera-
py[15-18].

Mechanisms and Therapeutic Strategies to Enhance Im-
mune Checkpoint Blockade Efficacy
	 The potential for highly durable responses has led to 
great interest in developing synergistic combinatorial approach-
es with other treatment modalities that could expand the propor-
tion of responders to checkpoint blockade. 

Overview of anti-tumor immune response
	 The immune response against tumor cells can be con-
ceptualized in four steps (Figure 1): 1) APCs are activated by 
tumor-associated antigens and present antigens to T-cells in the 
lymphatic system; 2) APCs activate antigen-specific T-cells; 3) 
activated T-cells traffic and infiltrate into the tumor; 4) Cytotox-
ic T-cells recognize and attack cancer cells[19]. In this process, 
CTLA-4 and PD-1 inhibitors are known to enhance T-cell acti-
vation and Subsequent cancer cell recognition and killing[20], but 
APC activation and T-cell trafficking must be addressed by other 
therapeutic methods. 

Role of the inflammatory tumor microenvironment in im-
munotherapy
	 Density of tumor infiltrating cytotoxic CD8+ T-cells 
is one of the best predictors of response to current checkpoint 
blockade therapies[21-23]. Characterization of the tumor microen-
vironment reveals two immunologic phenotypes: inflamed and 
non-inflamed tumors[24]. Many studies have shown that inflamed 
tumors, with dense T-cell infiltration and high concentrations 
of type I interferons, are more likely to respond to checkpoint 
blockade. Non-inflamed tumors lack T-cell infiltrate and may re-
quire additional interventions to achieve optimal inflammation 
and innate immune activation in the tumor microenvironment. 
However, the role of the inflammation is complex. Previous stud-
ies have shown a higher incidence of cancer in tissues that have 
experienced chronic inflammation, suggesting a pro-tumorigen-
ic effect in some inflammatory contexts[25-28]. Chronic inflam-
mation in the tumor microenvironment may contribute to tumor 
growth by promoting angiogenesis, cancer cell proliferation, tis-
sue invasion and metastasis[29]. Thus, there is a delicate balance 
between pro and anti-tumor immunity that is determined by the 
relative activation of different cell types and expression of var-
ious immune mediators in the tumor microenvironment[25,30,31]. 
Further studies are needed to improve our understanding of op-
timal targets and mechanisms in the inflammatory tumor micro-
environment in order to improve immunotherapy.

Innate immunity is critical in the anti-tumor immune 
response
	 Innate immunity represents the first line of immune 
defense. One major part of the innate immune system that is 
important for anti-tumor immune responses is the activation of 
antigen-specific T-cells by APCs. As discussed earlier, T-cell 
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priming requires two signals: the interactions between anti-
gens and the T-cell receptors, and the binding of co-stimulatory 
molecules to their receptors. The expression of co-stimulatory 
molecules is canonically triggered by recognition of Pathogen 
Associated Molecular Patterns (PAMP) by APCs. PAMPs are 
molecules that indicate the presence of pathogens like bacteria 
and viruses, and APCs detect PAMPs through Pattern Recogni-
tion Receptors (PRRs). PRRs then activate multiple pathways, 
and one of them leads to the production and surface expression 
of co-stimulatory molecules. PRRs can also stimulate secretion 
of type I interferons, which can induce co-stimulatory molecule 
expression on other cells including macrophages. It has been ob-
served in T-cell infiltrated tumors that some pathways related to 
innate response are activated and have high expression of type 
I interferons[33-34]. In addition, a recent study reported that long-
term clinical benefit following Ipilimumab therapy is associated 
with a provocative neoantigen signature composed of neoanti-
gen tetrapeptides similar to viral and bacterial antigens[35]. An 
important question is whether therapeutic methods that could 
trigger these innate immune related pathways can produce ad-
ditive or synergistic effects when combined with checkpoint 
blockade. 

Toll-Like Receptor activation induces dendritic cell activa-
tion and maturation
	 Toll-Like Receptors (TLRs) are a class of PRRs that 
recognize a variety of PAMPs. There are 10 types of TLRs in 
humans. Here, we focus on TLR-7, the receptor activated by the 
drug Imiquimod. Binding between TLR-7 on dendritic cells and 
tumor-associated nucleotide molecules up regulates the produc-
tion of transcription factor Nuclear Factor-Kappa B (NF-κB) in a 
process mediated by Myeloid Differentiation Primary Response 
Gene (MyD88). NF-κB then translocates into the nucleus and 
promotes transcription of pro-inflammatory cytokines (includ-
ing Tumor Necrosis Factor Alpha (TNF-α) and various interleu-
kins) and Chemokines (including CCL2, CCL3 and CCL4). In 
addition, activation of TLRs also induces IFN-α production by 
DCs[36-38]. It has also been shown that stimulation of TLR7 en-
hances DC survival, which is characterized by increased expres-
sion of CCR7 and co-stimulatory markers, CD80 and CD86[36]. 
Toll-Like receptor agonist (Imiquimod)
	 Imiquimod is a synthetic TLR-7 agonist that has been 
approved by the FDA for primary superficial basal cell carci-
noma. Imiquimod Monotherapy has limited efficacy in treating 
metastatic melanoma[39]. Combined Imiquimod and melanoma 
peptide vaccine therapy has been tested in Murine models, and 
the combined therapy demonstrated measurable anti-tumor im-
munity[40]. Vaccine and Imiquimod combined therapy is current-
ly under investigation.

STING activation promotes antigen presentation and T-cell 
priming
	 The Stimulator of Interferon Genes Complex (STING) 
is an endoplasmic reticulum resident protein that functions as an 
adaptor molecule for cytosolic DNA recognition. The STING 
pathway is essential for tumor-associated antigen uptake by 
APCs and T-cell priming[41]. Tumor-derived DNA is taken up by 
host APCs, which generate cyclic dinucleotides through enzyme 
Cyclic-GMP-AMP Synthase (cGAS)[42-44]. Binding of cyclic 
dinucleotides to STING leads to Phosphorylation of Interferon 

Fisher, D.E., et al. 

Melanoma Immunotherapy

Invest Dermatol Venereol Res   |    Volume 1: Issue 2



Regulatory Factor 3 (IRF3), which in turn promotes transcrip-
tion and production of type I interferons by APCs, which are 
important for early innate immune responses (Figure 2)[33,45,46].

Figure 2: The STING signaling pathway. After up-take of tumor-as-
sociated DNA, host APCs generate cyclic dinucleotides in a process 
mediated by enzyme cGAS. Cyclic dinucleotides directly activate 
STING, which specifies phosphorylation of IRF3 by the kinase TBK1. 
Phosphorylated IRF3 moves into the nucleus to enhance transcription 
of type I interferons, which play a critical role in early innate immune 
response.

STING agonist
	 The finding that the STING pathway can induce T-cell 
infiltration provides the basis for using STING agonists as a 
cancer therapeutic strategy. Mixed Linkage-RR-S2 CDA (ML-
RR-S2 CDA), A Cyclic Dinucleotide (CDN) derivative and 
STING agonist has shown activity in mouse models. Following 
intra tumoral injection of ML-RR-S2 CDA in one study, mice 
had significant and durable tumor regressions, and complete re-
sponders showed immune resistance to the same cancer cell line 
upon rechallenge[47]. CDNs are promising candidates for study in 
clinical trials.

Activated β-Catenin signaling pathway impairs dendritic 
cell activation and T-cell proliferation
	 β-catenin is a key intracellular signaling transducer, 
and dysregulation of β-catenin has been linked to many phys-
iological phenomena, including the development of cancer and 
the exclusion of T-cell infiltration into tumors. An interesting 
observation is that β-catenin signaling is activated in almost half 
of all non-inflamed melanomas[48]. Recent studies have shown 
that activated β-catenin signaling in tumor cells causes immune 
suppression mainly via blocking dendritic cell recruitment and 
subsequent T-cell activation.
	 It has been demonstrated in murine models that β-cat-
enin induces the expression of a transcriptional repressor, 
AMP-Dependent Transcription Factor 3 (ATF3), which sup-
presses Chemokine Ligand 4 (CCL4) Production. CCL4 is a 
key Chemokine in dendritic cell recruitment, and a low level of 
CCL4 results in impaired dendritic cell activation. The efficacy 
of checkpoint blockade is greatly reduced in β-catenin stabi-
lized mouse tumor models, suggesting that the β-catenin path-
way could be a potential therapeutic target in combination with 
checkpoint blockade[48].
	 It has also been shown in human melanoma cells that 
nuclear β-catenin directly binds to the IL-10 promoter and in-
creases IL-10 transcription and secretion. IL-10 induces differ-
entiation of immature dendritic cells into regulatory dendritic 
cells, which impairs ability of T-cells to secrete IFN-γ and cyto-
toxins such as granzyme[49]. This suggests that inhibiting β-cat-
enin accumulation might not only promote dendritic cell and 
T-cell activation, but also improve T-cell function.

β-Catenin inhibitor
	 Although β-catenin has long been identified as a po-
tential therapeutic target, the clinical development of β-catenin 
inhibitors is still at an early stage. Currently, several anti β-cat-
enin agents have been reported in pre-clinical studies[50,51], none 
in combination with immune checkpoint inhibitors.

Inhibition of the MAPK pathway enhances cancer cell recog-
nition by T-cells and augments T-cell function
	 The BRAF (V600E) mutation, the most common muta-
tion in melanoma, results in constitutive activation of the Mito-
gen-Activated Protein Kinase (MAPK) signaling pathway. The 
MAPK pathway regulates cell cycle progression and cell growth, 
and MAPK activation is implicated in the development of many 
cancers. In patients with melanoma, high response rates and rap-
id disease stabilization or regression are observed following ad-
ministration of targeted therapies that inhibit BRAF and MEK. 
However, early clinical benefit is followed by emergence of drug 
resistance in most patients. Interestingly, it has been observed 
in several studies that BRAF inhibitor enhances T-cell infiltra-
tion[52,53]. BRAF inhibition also leads to up regulation of Me-
lanocyte Differentiation Antigens (MDA) that might improve 
recognition of tumor cells by MDA-specific T-cells[53-55]. 
	 MAPK pathway activation results in increased activity 
of the transcriptional factor C-Jun, which up regulates the tran-
scription of PD-L1 through a process mediated by its co-factor 
Signal Transducer And Activator Of Transcription 3 (STAT-3)[56]. 
It has also been demonstrated that Oncogenic BRAF mutations 
enhance Interleukin-1 production. IL-1 up regulates expression 
of PD-L1, PD-L2 and COX-2 on Tumor-Associated Fibroblasts 
(TAFs), which in turn inhibit T-cell function and cytokine pro-
duction[57]. 
	 A recent study reported synergy of PD-1 blockade and 
BRAF inhibitors in a mouse melanoma model, with dose-de-
pendent increases in T-cell infiltration and PD-L1 expression 
following BRAF inhibition[58]. However, the first clinical trial 
of combined BRAF inhibitor (Vemurafenib) and Ipilimumab 
was terminated due to severe hepatotoxicity[59]. It has been pro-
posed that the combination of checkpoint blockade with MEK 
inhibition may achieve similar efficacy with fewer side effects 
compared to BRAF inhibition. The triple combination of BRAF 
inhibitor, MEK inhibitor and PD-1 inhibitor has been tested in 
mouse models with promising results[60]. The phase I trial testing 
Dabrafenib, Trametinib, Ipilimumab and Nivolumab quadruple 
therapy is currently underway.

Radiation enhances trafficking and infiltration of T-cells and 
tumor cell recognition
	 Radiation therapy causes cancer cell death by inducing 
DNA damage. During the process, radiation promotes tumor an-
tigen presentation and T-cell recruitment. Recent studies have 
shown that IFN-γ plays a key role in inducing T-cell trafficking 
after radiation. Radiation stimulates secretion of IFN-γ, which 
up regulates the expression of Vascular Cell Adhesion Molecule 
1 (VCAM-1) on tumor vessels, facilitating T-cell movement into 
the tumor[61,62]. IFN-γ also stimulates production of C-X-C Motif 
Chemokine Ligand 9 (CXCL9) by tumor cells, including C-X-C 
Motif Chemokine Ligand 10 (CXCL10) that is known to pro-
mote T-cell infiltration[61]. 
	 Radiation also augments T-cell recognition of melano-

www.ommegaonline.org

Health Risk with Contaminated Paper Currencies

Invest Dermatol Venereol Res   |    Volume 1: Issue 236

http://www.ommegaonline.com


mas by expanding endogenous peptide repertoires in melanoma 
cells[63,64]. It has been established that radiation can increase pep-
tide production and modify existing proteins. The proteins will 
then be degraded by Proteasomes, generating more tumor-as-
sociated antigens that can be presented by MHC, promoting a 
more immunogenic tumor microenvironment[64]. 
	 The phase I clinical trial testing combined Ipilimumab 
and radiotherapy reported partial responses in 18% and stable 
disease in 18% of patients with metastatic melanoma. Up reg-
ulated PD-L1 expression on tumor cells was observed, consis-
tent with T-cell exhaustion that could explain the low efficacy 
of this combined therapy. Addition of PD-1 inhibitor enhanced 
anti-melanoma responses in mice treated with the Ipilimumab 
and radiotherapy combination[65].

IDO inhibitor may augment the efficacy of PD-1 and CTLA-
4 by blocking additional pathways that impair T-cell prolif-
eration
	 IFN-γ secreted by infiltrating CD8+ T-cells induces 
expression of Indoleamine-2,3-dioxygenase (IDO) in tumor 
cells[66]. IDO is an important cytosolic enzyme in tryptophan 
catabolism and up regulation of IDO can result in tryptophan 
depletion. Lack of tryptophan causes cell cycle arrest in the 
G1 phase, preventing T-cell proliferation[67]. It has also been 
shown that IDO induces naïve T-cells to differentiate into CD4+ 
CD25+FoxP3+ Regulatory T-Cells (Tregs), which inhibit cyto-
toxic T-cell proliferation[68]. 

IDO inhibitor
	 Several IDO inhibitors are currently available. 1-Meth-
yl-Tryptophan (Indoximod), first discovered in 1991, is a trypto-
phan analogue. Its antitumor effects have been tested in mouse 
models of melanoma and other types of cancer[69-71]. Indoximod 
caused only slight tumor growth retardation, but a significant 
increase in cytotoxic T-cell to Treg ratio, indicating a more 
pro-inflammatory tumor microenvironment. The phase I/II clini-
cal study of indoximod with Ipilimumab are underway. Another 
IDO inhibitor, INCB024360, has completed phase I testing and 
is currently being tested in several phase I and II combination 
clinical studies with Imiquimob or PD-L1/PD-1 inhibitors in dif-
ferent cancers including melanoma. 

Emerging checkpoint blockade
	 In addition to the PD-1 and CTLA-4 pathways, mul-
tiple other immune checkpoints have been described. Here we 
discuss two co inhibitory molecules, T-Cell Immunoglobulin 
Mucin 3 (TIM-3, also known as HAVCR2) and Lymphocyte Ac-
tivation Gene 3 (LAG-3; also known as CD223), that are prom-
ising candidates for therapeutic inhibition to induce or enhance 
anti-tumor immunity.

TIM-3 acts as an inhibitory molecule in T-cell response
	 The early immune response depends on the activation 
of APCs. High Mobility Group Protein B1 (HMGB-1) is import-
ant in endocytosis of tumor-associated nucleic acids into den-
dritic cells. TIM-3 expressed on dendritic cells interferes with 
HMGB-1, preventing uptake of nucleic acids released by tumor 
cells and subsequent innate immune response activation[72]. 
Additionally, it has been suggested that TIM-3 affects T-cell 
responses indirectly via helper T-cells and regulatory T-cells. 
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TIM-3 blockade results in increased secretion of IFN-γ from 
helper T-cells[73]. It has also been observed that TIM-3+ regula-
tory T-cells accumulate in the tumor before cytotoxic T-cell ex-
haustion and depletion of these regulatory T-cells improves cy-
totoxic T-cell functions[74]. As the majority of tumor-infiltrating 
T-cells often express both PD-1 and TIM-3[75], it is expected that 
combined PD-1 and TIM-3 inhibition would generate stronger 
immune responses, as has been demonstrated in several murine 
studies[75,76].

LAG-3 directly and indirectly regulates cytotoxic T-cell ac-
tivity
	 LAG-3 is another important checkpoint that has been 
identified recently. LAG-3 is a surface protein found on many 
different types of cells and MHC class II is its only known ligand. 
LAG-3 suppresses cytotoxic T-cell activity indirectly by sup-
pressing CD4+ helper T-cells and activating regulatory T-cells. 
LAG-3 on helper T-cells directly binds to MHC II on APCs, 
resulting inhibition of CD4+ helper T-cell proliferation and 
production of pro-inflammatory cytokines including IFN-γ[77]. 
LAG-3 is also known to enhance regulatory T-cells function, al-
though the exact mechanism is not fully understood[78]. LAG-3 
expression is also up regulated on CD8+ cytotoxic T-cells in re-
sponse to antigen stimulation, and blockade of LAG-3 increases 
CD8+ T-cell proliferation and secretion of IFN-γ[79].
	 In mouse experiments, the combination of LAG-3 in-
hibitor and PD-1 inhibitor suppresses tumor growth more than 
LAG-3 or PD-1 monotherapy[80]. A phase I study has been initi-
ated for the treatment of solid tumors with anti-LAG-3 monoclo-
nal antibody BMS-986016 administered alone or in combination 
with Nivolumab. Besides transmembrane LAG-3, there is also a 
Soluble Form of LAG-3 (sLAG-3). Like transmembrane LAG-
3, sLAG-3 also binds HMC class II molecules, however sLAG-3 
has a stimulatory effect: sLAG-3 activates APCs when bind to 
MHC class II on the APC cell membrane[81]. sLAG-3 protein, 
IMP321, has been investigated as a potential therapeutic agent. 
IMP321 delivered some clinical benefit in several phase I clini-
cal trials including patients with several types of cancer. Howev-
er, more extensive study is required in order to fully evaluate the 
efficacy of IMP321[82,83]. 

Conclusion

	 CTLA-4 inhibitor and PD-1 inhibitors have already 
demonstrated the potential of immune checkpoint blockade 
based immunotherapy in treating melanoma. With a deeper 
understanding of the mechanisms of tumor immune evasion, 
including many other inhibitory pathways, we are discovering 
new therapeutic targets and strategies that may produce synergy 
with checkpoint blockade in patients for whom current therapies 
are ineffective.
	 Depending on the immune microenvironment, pa-
tients will likely require different combinations of treatments to 
achieve tumor remission. In addition to novel therapeutic modal-
ities, the development of strategies to characterize the immune 
milieu with the potential to customize treatments for each indi-
vidual should be another emphasis of future research. We expect 
to see continuous effort in the near future devoted to exploring 
new therapeutic targets and different combinations of treatment 
methods, to push the frontier of available treatments for patients 
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with melanoma and other malignancies. 
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