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Abstract
Background: Age-associated body composition changes increase the risk of devel-
oping insulin resistance. Identifying these subjects in epidemiological studies is chal-
lenging.
Objective: Identify insulin-resistant subjects over a 3-year period and determine pre-
dictors.
Methods: Data on 649 non-diabetic participants of the Quebec Longitudinal Study on 
Nutrition and Successful Aging (NuAge) Cohort were analyzed. Muscle mass index 
(kg/height in m2) and %body fat were derived from dual X-ray absorptiometry or bio-
impedancemetry. Insulin resistance was based on the Homeostatic Model Assessment 
of insulin resistance HOMA-IR score. Physical activity was assessed by questionnaire. 
Protein and fat intake were obtained from three 24-h food recalls. Developmental tra-
jectories over 4 time points were used to determine insulin sensitivity status. Logistic 
regression analyses serve to determine baseline variables affecting change over time.
Results: Seven group-based trajectories were identified from a model with good fit. 
Curve inspection allowed for the classification of insulin sensitive and resistant sub-
jects. Predictors of insulin resistance were: muscle mass index [OR (95% CI): 1.72 
(1.26 - 2.3)]; %body fat [1.18 (1.12 - 1.25)]; male sex [OR for women versus men: 
0.145 (0.04 - 0.45)]. 
Conclusion: Greater muscle mass index and % body fat contribute to higher odds of 
insulin resistance with aging in man whereas being a woman decreases these odds. 
The relationship between muscle mass and the development of insulin resistance is 
counterintuitive and requires further exploration since it suggests that maintenance 
of muscle mass with aging is a contributor. Our probabilistic approach addresses one 
of the challenges in determining insulin-resistant subjects in epidemiological studies.
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Introduction

 Aging is associated with an increased risk of chronic 
diseases such as type 2 diabetes. Data from the Canadian Com-
munity Health Survey show that the population prevalence of 
diabetes increases from 4.4% at age 30 - 64 years to 13.5% at 65 
years and over[1]. The prevalence in those > 75 y reaches 21.3% 
in males and 16.61% in females[2]. Insulin is an anti-catabolic 
hormone regulating different substrates that stimulates glucose 
uptake from the bloodstream into adipocytes and myocytes while 
suppressing glucose production from the liver[3]. Dysregulation 
of insulin action, a condition known as insulin resistance (IR), is 
responsible for elevations in blood glucose and lipid concentra-
tions, hyperinsulinemia and eventually, overt type 2 diabetes[4,5]. 
 Aging is also associated with changes in body compo-
sition, with an increase in fat mass and a decrease in fat-free 
mass[6]. Greater adiposity has been associated with a higher 
risk of IR development[7] since as visceral fat increases so does 
the risk of inflammation and the availability of free-fatty acids, 
both considered as mediators of IR[8]. In contrast, a decrease in 
fat-free mass, mainly muscle, could also be independently as-
sociated with IR since skeletal muscle is the major organ for 
insulin-mediated glucose disposal[9]. Muscle loss with aging is 
accompanied by a preferential loss of type I fiber as opposed 
to type II[10,11]. As the former contains most of the muscle mito-
chondria[12] and since aging affects skeletal mitochondrial func-
tion[13], it has been proposed that this dysfunction would lead to 
IR[14]. Furthermore, there is a link between muscle mass loss and 
markers of inflammation, which are implicated in IR[8]. Mito-
chondrial dysfunction in older adults can also lead to decreased 
fat oxidation in muscles[15]; as a consequence, there is an accu-
mulation of intramyocellular lipid (IMCL), a recognized factor 
in IR development, independently from overall obesity[16]. Some 
studies have linked obesity to IMCL and to IR[17]. 
 Although total protein intake, particularly from animal 
sources, could have a beneficial effect on muscle mass, itappears 
however, that a high animal protein intake could increase the 
risk of IR[18]. A number of studies have suggested that a diet high 
in protein of mainly animal origin may increase risk of IR de-
velopment[19-21]. While dietary intake of total and animal proteins 
were shown to increase the risk of type 2 diabetes (taking in 
account fat intake and adiposity), plant protein intake was not 
associated with IR in a population of men and women aged 21 - 
70 years[21].
 Insulin resistance is often assessed in epidemiological 
studies using the Homeostatic Model Assessment of insulin re-
sistance (HOMA-IR) score that requires only determination of 
fasting circulating glucose and insulin concentrations[5]. A higher 
HOMA-IR score indicates more IR. The HOMA-IR score cor-
relates well (r = 0.69 - 0.83) with the gold standard, euglycemic 
hyperinsulinemic clamp, in different age groups[22]. Based on the 
above, we hypothesized that, 1) HOMA-IR score increases over 
time in older subjects; and 2) baseline greater skeletal muscle 
mass, independently from obesity and fat intake, would be neg-
atively associated with an increase of HOMA-IR score observed 
over 4 years. Using longitudinal data from a generally healthy 
older individuals, our objectives were to assess the changes that 
occur with the HOMA-IR score over four annual time points and 
to compare insulin-sensitive versus non-sensitive subjects with 
regard to several baseline variables, including body composition 

and dietary protein intake, due to concerns linking high protein 
intake to impaired glucose metabolism and type 2 diabetes[19,20]. 

Methods

Study population
 Data for this study come from the Quebec Longitudinal 
Study of Nutrition and Aging “NuAge” Cohort[23]. The NuAge 
Cohort is a four year observational study, with data collection 
spanning from 2003 - 2009 of 1793 community-dwelling men 
and women aged 68 - 82 years in general good physical and 
mental health, and functionally independent at recruitment, 
generating 600 people per sex and age stratum equally divid-
ed between sexes. Recruitment took place in the Montreal and 
Sherbrooke areas of Quebec, Canada. Methodology has been 
described in detail elsewhere[23]. Eligibility criteria required that 
participants were French- or English-speaking on relative good 
health, meaning that they were able to walk without help (cane 
acceptable), free of disabilities in activities of daily living, not 
cognitively impaired (3MS > 79), able to walk 300 meters or 
to climb 10 stairs without rest, and able to provide written in-
formed consent. Exclusion criteria consisted of class II-IV heart 
failure, symptomatic chronic obstructive pulmonary disease, in-
flammatory digestive diseases or cancer in the past five years 
(except basal cell of the skin). All participants gave informed 
consent and underwent annual extensive evaluations of body 
composition, dietary intake, physical performance, and func-
tional autonomy and provided fasting venous blood and urine 
samples. A total of 1062 participants were non-diabetic. Partic-
ipants suffering from diabetes were excluded based on reported 
diabetes mellitus or taking anti-diabetic medication, or fasting 
glucose > 6.9 mmol/L, as it has been shown that diabetes has 
an effect on muscle mass[24]. Of these non-diabetic participants, 
958 had HOMA results and 649 had complete data. Reasons for 
missing data were administrative in nature, i.e., lack of available 
body composition or laboratory results and thus the data were 
considered to be missing completely at random (MCAR), reduc-
ing statistical power but not introducing bias.  The present study 
protocol was also reviewed by the Research Ethics Board of the 
McGill University Health Centre. 

Hypotheses and model
 First, we hypothesized that HOMA-IR score increase 
with aging. To study the evolution, we used trajectories over 
four annual time points. Second, we hypothesized that body 
composition and dietary intake from different protein sources 
and fat intake (risk factor for insulin resistance), all adjusted for 
energy intake would affect HOMA-IR score changes. Individual 
factors such as age, sex, physical activity, smoking and presence 
of chronic conditions were considered as covariates and were 
entered into the model. 

Measurements and data collection
 Insulin sensitivity was estimated based on the HO-
MA-IR score and calculated using the following formula: [in-
sulin (µU/ml) x glucose (mmol/L)/22.5]. To assess IR in our 
population sample we modeled HOMA as a continuous variable. 
Insulin concentration was determined using a human insulin ra-
dioimmunoassay (RIA) kit (detection limit: 12 pmol/L per tube; 
intra-assay coefficients of variation: 1.1% to 8.3%; Linco Re-
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search Inc, St. Charles, MO). Glucose was determined at local 
hospital laboratories using standardized, automated methods.
 Chronic diseases were reported using a modified ver-
sion of the Older American Resources and Services question-
naire[25]. Participants were asked to answer ‘‘yes’’ or ‘‘no’’ if 
they were known to have any of the 20 common diseases (e.g., 
diabetes, osteoporosis, high blood pressure). The total number 
of diseases was used as an indicator of comorbidity. Lifetime 
tobacco usage is presented as pack-years smoked, based on 20 
cigarettes per pack. Current physical activity was quantified us-
ing the Physical Activity Scale for the Elderly (PASE) question-
naire[26].  
 Dietary intake was measured annually by three non-con-
secutive 24-hour dietary recalls including one face-to-face inter-
view and two telephone interviews. The 24-hour dietary recall 
has been shown to be an effective tool to measure dietary intake 
in such large populations, providing good estimates of intake in 
healthy elderly people[27]. These were analyzed using CANDAT 
program (© Godin, London ON), which uses the 2007b Canadi-
an Nutrient File, Health Canada. Nutrients analyzed included to-
tal energy intake, protein, total fat, carbohydrates, dietary fiber, 
and selected micronutrients (vitamins and minerals). We con-
ducted a sub-group analysis of protein intake, classified as ani-
mal protein (all proteins from animal sources such as dairy prod-
ucts, eggs, meat, poultry, fish), and plant proteins to test their 
potential specific role on muscle mass and insulin action. We 
were able to classify animal proteins into processed and regular 
(not processed) meat proteins and excluded processed ones to 
test the effect of animal protein per se, as the former has already 
been shown to have deleterious effects on IR development[28,29]. 
Dietary protein intake (from unprocessed and plant proteins) and 
fat intake were corrected for total energy intake and entered into 
our model as percentages of energy (kilocalories).
 Body composition was assessed by dual energy X-ray 
absorptiometry (DXA;GE Lunar Prodigy; Madison, WI) for 
subjects from the Sherbrooke area and by bio-impedance spec-
trum analyzer (model 4000B, Xitron Technologies, San Diego, 
CA) for subjects from the Montreal area.  Total muscle mass 
(kg) of the subjects undergoing BIA was estimated by entering 
values of reactance with a resistance at 50khz and a 800 mA 
current in the formula proposed by Janssen et al.[30]. This for-
mula was validated against magnetic resonance imaging (MRI), 
the gold standard for body composition assessment. The muscle 
mass value was divided by height squared to derive the muscle 
mass index [MMI = muscle mass (kg) / height (m)2]. Results of 
appendicular muscle mass obtained by DXA were extrapolated 
to total muscle mass using the equation of Kim et al.[31], which 
was also validated against MRI. MMI was then calculated, rend-
ing thus the whole population similar in regard to this variable, 
which was entered into our model. Body fat was estimated di-
rectly by DXA, while for estimates obtained from BIA, we sub-
tracted the fat-free mass estimated from a NuAge-specific pop-
ulation-derived equation from total weight. We then calculated 
percent body fat, which was entered into our model. Compar-
isons between methods in 406 subjects undergoing both DXA 
and BIA gave an average Bootstrap Cross Validation regression 
coefficient for lean body mass of 0.942 ± 0.003 (95% CI: 0.941 
- 0.942) for BIA, which is excellent.
 DXA provides a good estimate for the measure of whole 
body composition providing a three compartment model (bone 
mineral density, fat, and bone-free lean mass)[32]. BIA has also 

been shown to be a good tool for assessing body composition 
with excellent correlations compared with DXA of 0.91-0.95.

Statistical analyses
 Basic descriptive statistics, including means, standard 
deviations and proportions, were used to describe the sample. 
For continuous variables, Pearson correlation coefficients were 
used to assess relationships and t-tests to compare groups, where-
as for categorical variables chi-square tests were employed. To 
estimate the change in HOMA-IR score over 4 time points (3 
years), we used developmental trajectories. These were estimat-
ed with the TRAJ procedure, a semi parametric group-based 
modeling strategy[33], using  Statistical Analysis Software (SAS, 
version 9.2).We used the censored normal model (CNORM) 
within the TRAJ procedure appropriate for data that are approx-
imately normally distributed with or without censoring. Censor-
ing is used because the data tend to cluster at the minimum and 
at the maximum of the scale. Group-based trajectory linear mod-
eling is designed to identify clusters of individuals following the 
same progression over time measured in years from baseline[33]. 
The calculated HOMA-IR score was the outcome regressed over 
time. Fit statistics and posterior probabilities of group mem-
bership were used to compare models with different trajectory 
groups and to choose the best-fitting model. The choice of the 
best-fitting model was based on: having AIC and BIC values 
closest to 0; high mean posterior probabilities specific to each 
group; and similar theoretical and assigned proportions. 
 Once a final model was chosen, we further assembled 
the trajectories into two groups based on their HOMA scores that 
we had identified as insulin-sensitive and IR groups by macro-
scopic analysis of the trajectory curves.  Posterior probabilities 
were applied to support that individuals were correctly assigned 
to the appropriate grouping. To test our second hypothesis, pre-
dictors of insulin sensitivity were examined using logistic re-
gression, carried out only among those with complete data. We 
compared the two groups as dependent variables in a model with 
baseline independent variables; specifically, these were age, sex, 
body composition measures, physical activity, smoking, chronic 
diseases, and diet (fat and animal and plant protein intakes). All 
variables except sex were entered as continuous in our model. 
Beta coefficients from the logistic regression were exponentiat-
ed for interpretation as odds ratios.

Results

 Trajectory analysis was performed on 958 subjects 
(90.2% of the whole non-diabetic sample comprising 1062 sub-
jects) with at least two measures of HOMA. The mean HOMA 
of the 958 subjects was 2.45 (± 0.18) at baseline. However, our 
analysis included the 649 subjects with complete sets of data 
(61.1% of the whole non-diabetic sample). Table 1 show base-
line descriptive characteristics of the whole sample modelled 
with trajectories, and those who were included in further anal-
yses. The best-fitting trajectory model identified 7 groups. This 
model had AIC and BIC statistics closest to 0, had mean posteri-
or probabilities greater than 0.7 for all groups, and the assigned 
proportions per group based on individuals’ highest posterior 
probabilities were similar to the theoretical proportions. Details 
for the seven trajectory groups, including the theoretical and as-
signed proportions and mean posterior probabilities status are 
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shown in Table 2 as well as for two groups created according 
to insulin sensitivity. The trajectories of HOMA-IR scores over 
time are shown in Figure 1. We found no statistically signifi-
cant change over time for groups 1,2,3,4 and 5. While Groups 
6 and 7 showed some variation, they had entered the analyses 
with higher values than groups 1, 2 and 3. The HOMA-IR score 
increased in Group 6 over time. Although group 7 (comprising 
0.63% of the population) showed a decrease in HOMA-IR score, 
the final value was still considered to be high. Our aim was to 
determine which subjects developed IR, but we were unable to 
see any clinically meaningful change over a 3-year period. The 
macroscopic inspection of the curves suggested 3 patterns (no 
change, increase, decrease). However, since groups 6 and 7 to-
gether comprised only 1.3% of the population, we did not have 
enough power to compare them to the third group of unchanged 
pattern. 

 We then proceeded with a model-based determination 
of insulin-sensitive versus IR subjects over time by grouping 
curves of subjects falling into groups 1, 2 and 3 (90% of partic-
ipants) versus those in groups 4, 5, 6, and 7. We grouped those 
in the lowest trajectories (1, 2 and 3) based on the rationale that 
they had a lower HOMA-IR versus those in the other trajectories 
(4, 5, 6, 7) which had higher HOMA-IR scores at all time points. 
Cut-off for the HOMA score for IR subjects was set at 6.85. The 
posterior probability of falling into one of the insulin-sensitive 
groups was very high (99%) as was the posterior probability in 
being assigned to one of the IR groups (92%), showing that the 
participants had a high chance of being assigned correctly to ei-
ther one of the groups. When assignment to a single group was 
less clear, the confusion tended to be with another group of the 
same type, rather than with a group of the other type.

Table 1: Comparative statistics between the whole sample and subjects with the complete dataset.
Whole sample N = 958 Included sample N = 649 P-value

Muscle mass index (kg/m2) 8.6 ± 1.5 8.7 ± 1.5 < 0.001
Body fat (%) 33.5 ± 9.0 33.1 ± 9.1 < 0.001
Age (y) 73.8 ± 4.0 73.5 ± 4.0 < 0.001

Sex
W = 498 W = 342
M = 460 M = 307

Smoking (pack-y) 9.9 ± 52.5 9.0 ± 50.0 < 0.001
Animal protein (% total kcal/d) 8.2 ± 3.6 8.0 ± 3.4 < 0.001
Plant protein (% total kcal/d) 5.2 ± 1.3 5.1 ± 1.4 < 0.001
Fat intake (% total kcal/d) 33.0 ± 6.2 33.4 ± 6.0 < 0.001
PASE (score) 107.3 ± 52 107.0 ± 53 < 0.001
Chronic diseases (n) 3.2 ± 2.0 3.1 ± 2.0 < 0.001

 
Table 2: Description of HOMA-IR score trajectory groups and categorizing into 2 subgroups (insulin-sensitive versus non-insulin sensitive).

Group Intercept Assigned Number (%) Theoretical %
Posterior probabilities 

Mean (SD) Minimum - Maximum
1- insulin-sensitive 2.35 392 (40.92) 40.21 0.82 (0.15) 0.50 - > 0.99
2- insulin-sensitive 3.46 333 (34.76) 34.01 0.72 (0.14) 0.46 - 0.97
3- insulin-sensitive 5.15 137 (14.30) 15.81 0.81 (0.14) 0.48 - > 0.99
4- non-insulin-sensitive 6.85 61 (6.37) 6.37 0.87 (0.16) 0.51 - > 0.99
5- non-insulin-sensitive 10.85 23 (2.40) 2.23 0.88 (0.16) 0.51 - 1.00
6- non-insulin-sensitive 3.33 6 (0.63) 0.70 > 0.99 (0.007) 0.98 - 1.00
7- non-insulin-sensitive 20.07 6  (0.63) 0.66 0.95 (0.12) 0.70 - 1.00 
Insulin-sensitive groups (1,2,3) 862 (90.0) 0.99 (0.04) 0.51 - 1.00
Insulin non-sensitive group (4,5,6,7) 96 (10.0) 0.93 (0.14) 0.51 - 1.00

Note: Bayesian information criterion (958 df) was -4211.56 and Akaike information criterion -4160.48 for 7 group model. Values closer to 0 in-
dicate better fit.
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Figure 1: HOMA-IR score trajectory over 4 time points using CNORM 
model with 7 groups and their confidence intervals. NIS: Non-insu-
lin-sensitive group; IS: Insulin-sensitive group.

 Comparisons of characteristics at baseline by category 
of insulin sensitivity status for participants with complete data 
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are presented in Table 3. We only found significant differences 
for % body fat and MMI between the two groups. We report 
the bivariate analyses of continuous baseline variables included 
in our model in Table 4. Weak but significant negative correla-
tions were observed between % body fat and physical activity; 
% body fat and MMI; animal protein and fat as % intakes of total 
energy. A significant positive correlation was obtained between 
MMI and PASE score. 
 Results of the logistic regression are presented in Table 
5. Significant odd ratios were obtained for MMI, % body fat 
and sex, controlling for all other covariates in the model. As the 
proportion of the sample with the outcome is relatively low, the 
odds ratios can be interpreted as relative risks. For every one 
unit increase in muscle mass index, the risk of having insulin 
resistance, independently from adiposity and other covariates, 
increased by 1.72. For a one unit increase in % body fat, this 
risk is 1.18 which has a high implication on insulin resistance. 
The risk of insulin resistance was 6.9 times greater for men than 
women.

Table 3: Descriptive characteristics at baseline of insulin-sensitive and non-insulin sensitive groups. 
Participants: Insulin-sensitive group Non-insulin-sensitive group P-value
N 594 55
Sex M = 270, W = 324 M = 37; W = 18 Test with a chi-sq
Age (y) 73.5 ±  3.9 73.1  ±  3.7 0.56
Chronic diseases (n) 3.2 ± 1.9 3.2  ±  2.0 0.81
Smoking (pack-y) 9.5 ± 52.7 3.7 ±  21.0 0.41
Animal protein (% total kcal/d) 5.1 ± 1.3 7.6 ± 2.9 0.39
Plant protein (% total kcal/d) 5.1 ± 1.3 5.1 ± 1.4 0.69
Fat intake (% total kcal/d) 33.4 ± 6.0 33.6 ± 6.2 0.77
Body fat (%) 32.8  ±  9.2 36.7  ±  7.2 0.0019
Muscle mass index (kg/m2) 8.6  ±  1.4 9.6 ±  1.4 < 0.0001
PASE (score) 107.8  ±  51.4 98.9  ±  67.7 0.23

Table 4: Pearson correlation coefficients between all baseline variables. 
Age (y) Body fat 

(%)
MMI 
(kg/m2)

PASE 
score

Smoking 
(pack-year)

Plant 
protein 
intake (%)

Animal 
protein 
intake (%)

Fat intake 
(%)

Diseases 
(n)

Age (y) 1
Body fat (%) 0.06* 1
MMI (kg/m2) -0.19† -0.49† 1
PASE score -0.21† -0.28† 0.28† 1
Smoking (pack-year) -0.02 -0.04 0.03 0.005 1
Plant protein intake (%) -0.01 -0.02 -0.08* 0.03 -0.02 1
Animal protein intake (%) -0.03 0.12* -0.1† -0.06 -0.01 -0.12† 1
Fat intake (%) -0.003 0.007 0.06 0.05 0.04 -0.16† -0.28† 1
Diseases (n) 0.14† 0.20† -0.15† -0.19† 0.002 0.01 0.02 -0.04 1

MMI: Muscle mass Index; PASE: Physical Activity Scale for the Elderly.
*Correlation is significant at the 0.05 level (2-tailed).
†Correlation is significant at p < 0.001 level (2-tailed).
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Table 5: Logistic regression Odds Ratios of the most parsimonious model of insulin resistance.
Baseline variables Estimate B Standard error of B Odd ratios (95%CI) P value
Body fat (%) 0.16 0.02 1.18 (1.12 - 1.25) <  0.0001
MMI (kg/m2) 0.54 0.15 1.72 (1.26 - 2.3) 0.0006
PASE score -0.003 0.003 0.99  (0.99 - 1.0) 0.19
Age (y) -0.003 0.04 0.99  (0.91 - 1.0) 0.93
Sex (women versus men) -0.96 0.29 0.15 (0.04 - 0.45) 0.0009
Smoking (pack-year) -0.006 0.005 0.99 (0.98 - 1.0) 0.24
Chronic diseases (n) -0.005 0.08 0.99 (0.84 - 1.17) 0.95
Fat intake (% total energy) -0.01 0.03 0.98 (0.93 - 1.04) 0.67
Animal protein intake (% total energy) -0.03 0.04 0.96 (0.87 - 1.06) 0.45
Plant protein intake (% total energy) -0.06 0.12 0.93 (0.73 - 1.2) 0.61

Dependent variable: HOMA-IR score (insulin-sensitive) versus non insulin-sensitive).
Insulin sensitive coded 0 and insulin resistant coded 1
Sex coded 0 for women and 1 for men
Kendall’s Tau-a =  0.102; Sommer’s D = 0.657; c-statistic =  82.9%.

Discussion

 To our knowledge this is one of the first studies in this 
type of population to analyze the developmental trajectories 
of HOMA-IR score over time. We did not find any significant 
changes for IR over 3 years. However, some subjects falling into 
the IR group entered the study with high HOMA-IR values (10% 
of the overall population). We surmise that our subjects were 
generally healthy at baseline, and that changes of HOMA-IR 
may not be readily detected within a 3-year period.  Our first 
objective was to use developmental trajectories because of the 
inability of a single HOMA-IR score cut-off to accurately identi-
fy individuals with different baseline HOMA scores who would 
become resistant over time. The rationale of this study is to help 
identify changes in HOMA over time to better predict deteriora-
tion in insulin sensitivity using clinical predictors such as body 
composition, dietary intake and patient’s characteristics.
 The validity of the model is supported by the high pos-
terior probabilities we obtained (Table 2) and based on macro-
scopic analysis of the curves, we were able to distinguish in-
sulin-sensitive versus IR subjects. Although we did not have a 
cut-off to regroup participants based on their initial HOMA-IR 
score, we defined our population with the lowest HOMA-IR 
(data) values to be sensitive in contrast to higher HOMA-IR 
score participants. 
 It is worth mentioning that groups 6 and 7 showed 
some change patterns, but included only 1.3% of the total pop-
ulation. We ran a logistic regression to compare groups 6 and 7 
individually to other insulin-sensitive groups, but due to lack of 
power, results cannot be considered reliable (results not shown).
 Our second objective was to compare subgroups identi-
fied from trajectories for baseline variables. Consistent with lit-
erature, male sex and % body fat impacted on HOMA-IR score 
over time. However, we found an independent counterintuitive 
relationship between MMI and HOMA-IR score over time sug-
gesting that higher muscle mass predicts an increased IR risk in-
dependently from % body fat. In one study of community-dwell-
ing older Mexican adults, it was shown that low muscle mass is 
associated with a higher HOMA score[34]. Differences with our 
results may lie in divergent methods of calculating skeletal mus-

cle mass as well as defining IR. In the Mexican Study, no cor-
rection for height was carried out as we did for muscle mass and 
IR was quantified at > 75th percentile. Cross-sectional data from 
NHANES III have also shown that sarcopenia, independently of 
obesity, is associated with IR risk when sarcopenia was defined 
as muscle mass divided by weight[35], again a different method 
of defining muscle mass. However the association was stron-
gest in younger individuals (under 60 years of age). This sug-
gests that the effect of muscle mass on insulin sensitivity differs 
among younger compared to older individuals. When muscle 
mass index was divided by height similar to our study, another 
NHANES III study examining the relationship of obesity and 
sarcopenia with type 2 diabetes and poor glycemic control found 
that sarcopenia was no associated with any of these risk factors 
[36]. Our results are consistent with others showing that sarcope-
nic obesity (a condition combining low muscle mass and high % 
body fat) is associated with better metabolic outcome than obese 
non-sarcopenic individuals even after correcting for visceral fat 
mass, which may link sarcopenia to a better metabolic profile[37]. 
Similarly, it has been shown that a small muscle mass might be 
protective against IR in sedentary postmenopausal women[38]. 
 Type 1 muscle fibers contain most of the muscle mito-
chondria and aging affects its function[13]. It is possible that since 
there is a decrease in type 2 muscle fibers with aging, which are 
less linked to insulin function, the remaining type I fibers (in-
volved in insulin action) would render muscle more insulino-re-
sistant because of post receptor desensitization. However, since 
one study has shown that the increase in type 2 fibers in mice im-
proved overall glucose disposal[39], this suggestion remains con-
troversial. Another explanation may be that with aging, muscle 
may undergo fat infiltration, predisposing older adults to IR[16]. 
Therefore, having low muscle mass may attenuate this risk. Fur-
ther studies assessing the association between muscle loss and 
IR with aging would need to include muscle fiber phenotype to 
clarify this issue. Since other variables included in our model 
(physical activity, protein and fat intake, among others) did not 
differ between the insulin-sensitive and the IR groups, we ran 
the most parsimonious model including body composition mea-
sures and gender. The fit statistics were good (results not shown). 
This shows that the baseline variables affecting HOMA-IR in a 
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3-year period were mainly MMI, % body fat and sex. 
 Our study has limitations. We have defined our subjects 
as belonging to insulin-sensitive versus IR groups based on de-
velopmental trajectories. Since trajectories are a probabilistic de-
termination of individuals being assigned to a particular group, 
some individuals might actually belong to a different faction. 
The posterior probabilities obtained with the 7 assigned groups 
were high, which adds validity to our model. However, since 
groups 3 and 4 obtained in the middle of the trajectories might 
overlap (individuals assigned to group 3 could also be assigned 
to group 4 and vice versa), we performed some sensitivity analy-
ses by running the regression by grouping the highest and lowest 
trajectories only to minimize misclassification. We grouped tra-
jectories 1 and 2 versus 5, 6 and 7 and ran the logistic regression. 
The results provided the same interpretations (data not shown). 
Another limitation comes from the different body composition 
measures used in our sample. However, we have rendered the 
whole population similar with regard to MMI, which minimize 
technical errors.
 In conclusion, the developmental trajectories described 
here have provided a means of identifying insulin-resistant sub-
jects. Trajectory analysis can detect and identify subgroups of 
the population. Our study showed that % body fat, muscle mass 
and sex can predict development of insulin resistance. We did 
not observe any changes for HOMA-IR score over time suggest-
ing that it may not be detected in healthy elderly individuals over 
a 3-year period. The relationship between maintenance of mus-
cle mass and development of insulin resistance with aging re-
mains at the present time unsettled. Future longitudinal research 
on cut-offs of HOMA-IR score as well as its association with 
muscle mass strength and quality with longitudinal data over 
longer periods of time is warranted.
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