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 Introduction

 Due to the importance of estrogen and its receptor, es-
trogen receptor (ER), we conducted this review study to bring 
to the reader a good source of information. In general, we may 
thought that ER is being of main interest in reproductive sys-
tem. As will be seen in the following sections, estrogen and ER 
have vital roles in multiple pathways from normal physiological 
conditions to inflammatory conditions and carcinogenesis. This 
review discusses the role of ER as a signaling molecule, its vari-
ants, its role in proliferation and apoptosis, its role in immunity, 
its role in inflammation, autoimmunity, tumors, and its therapeu-
tic role in treating cancer.

Signaling pathways of ER
 Estrogens are included in regulating various physiolog-
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Abstract

 Estrogen receptor (ER) has been shown to be involved in several cellular and 
metabolic pathways. In this study, we reviewed the literature for molecular and physi-
ological roles of estrogen receptor in normal and pathological conditions. We discussed 
the expression of estrogen receptor in several tissues as well as the potential of using ERb 
agonists in treating proliferative hematological disorders. The function of estrogen is var-
ied and may look contradicted. Estrogen has multiple roles under physiological conditions 
including signaling roles in cell growth, reproduction, development and differentiation. 
Estrogens exert their effects through two distinct estrogen receptors, ER-α and β to which 
E2 binds strongly. The expression of ERs depends mainly on the type of ER. Although es-
trogen mainly acts in reproductive system, its receptors are selectively expressed in differ-
ent tissues. ER-β is highly expressed in the ovary, central nervous system, cardiovascular 
system, lung, male reproductive organs, prostate, colon, kidney and the immune system. 
ERb is highly expressed in lymphoid cells, and the finding of anti-proliferative roles of 
ERb, the potential to use ERb agonists in treating proliferative hematological disorders 
has been raised. Taken together, the function of estrogen seems to be determined by the 
estrogen receptor which is expressed in various tissues with relatively predominant forms. 
There is a potential to used ERb agonists in treating proliferative hematological disorders.
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ical processes such as cell growth, reproduction, development 
and differentiation. Estrogen is mainly synthesized in premeno-
pausal women by ovaries as 17b-estradiol (E2) which, in turn, 
exerts its effects on target organs and cells. On the other hand, 
the main source of E2 in postmenopausal women and in men 
comes from the conversion of extragonadal sites of testosterone 
and androstenedione into E2 by the action of cytochrome P450 
aromatase enzyme[1]. However, E2 has significant roles in me-
diating various pathological processes such as carcinogenesis[2]. 
Furthermore, estrogens exert their effects through two distinct 
estrogen receptors, ER-α and β to which E2 binds strongly[3]. 
 ERs can bind through three binding sites or domains: 
one is called NH2- terminal domain, another one binds the 
DNA, and the third one binds the ligand domain[4]. According 
to[5], there is a ligand-independent activation function (AF1) re-
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gion in the NTD, which has a role in transcriptional activation 
of target genes. The AF1 region has been found to act in the 
recruitment of co-regulatory proteins, and its activity is prom-
inent in ER-α in inducing gene expression, whereas its activity 
is less in ER-β. The DBD is characterized by being conserved 
between ER-α and ER-β and facilitates some forms of typical 
binding of the ERs to DNA in required genes, which is called 
“estrogen-responsive elements” (EREs). On the other hand, the 
LBDs of ER-α and ER-β were indicated to have a 59% of homo-
geneity. Furthermore, there are little differences in the structure 
of the binding sites of the two subtypes[6]. According to[7], small 
structural variations in the ligand, binding pockets permit the 
development of subtype selective ligands with selective affinity 
for and activity through ER-α and ER-β, respectively. It is worth 
to mention that in a study by[8], the biological roles of ER-α 
and ER-β as well as their target genes were shown to depend 
on specified ligands. The agonists of ER-β have high binding 
affinity for ER-β[9-11]. Other studies showed that there are three 
functional groups for the agonists of ERb, namely binders, acti-
vators and binders/activators[7,12]. It has been demonstrated that 
the LBD has an activation domain (AF2) which its activity is 
ligand-dependent and improves transcriptional activity[13,14]. ERs 
can adjust the expression of gene by binding some transcription 
factors including NF-jB, leading to either activation or suppres-
sion of target gene expression[15]. 
 Multiple ER binding sites have been identified in the 
human genome, and these sites were found to have transcrip-
tional regulatory mechanisms[16-18]. It has also been found that 
ligands have the ability to activate ER signaling independent 
of genomic pathways through binding to membrane-associated 
ERs which leads to quick cellular responses[19]. Another study 
has found that ERs have the ability to control transcription of 
target genes even if there no ligands since ERs are considered 
appropriate targets that can improve or impair the transcription 
of ER[20]. From the above discussion, the roles of ER as signal-
ing molecule are varied and vital in various metabolic pathways. 
We think that further research is required to study in-depth more 
metabolic activities in almost cells. 

Expression of the ERs and their splice variants
 The expression of ERs depends mainly on the type of 
ER. The expression of ER α is shown particularly in reproduc-
tive system (uterus, ovary), breast, kidney, bone, white adipose 
tissue and liver. On the other hand, ER-β is highly expressed 
in the ovary, central nervous system, cardiovascular system, 
lung, male reproductive organs, prostate, colon, kidney and the 
immune system[21,22]. Numerous studies have pointed to the ex-
pression of various isoforms of both ER-α and ER-β, which are 
derived from alternative splices. Such splice variants have been 
detected in a wide range of cells from normal cells to cancer 
cell lines and samples from different types of cancer[15]. In this 
context, several studies have demonstrated ER-α mRNA splice 
variants in cell lines and samples from breast, endometrial, ova-
ries and colorectal[23-28]. ER-β has some variants that were detect-
ed in various tumors such as breast cancer[27], endometrial can-
cer[29,30] and thyroid cancer[31]. According to[32], wild-type ERs, 
splice variants of ER-α and ER-β were shown to be expressed 
in normal lymphoid cells.  It is worth to mention that ER-α is 
localized in the nucleus and the cytoplasmic membrane of breast 
cancer cells, and it is thought that this leads to rapid signals re-

sulting in cell proliferation and survival upon ligand binding[33]. 
Other researchers have pointed to the membrane expression of 
ER-β[34,35].
 Other studies are still required to correlate the expres-
sion of ER with other proteins including Bcl2, p53, and possibly 
others because of possible shared roles that may interact with the 
expression of ER.

ER-mediated effects on proliferation and apoptosis 
 ERs induce opposed effects on proliferation and apop-
tosis. Estrogens have been shown to increase the growth of the 
breast, uterus, and prostate, which implies the possibility to in-
duce carcinogenesis[36-40]. Other studies employing ER-β knock-
out mice revealed contradicting findings in which estrogens 
through ER-β repress proliferation and induce differentiating 
stem cells in various tissues[39,40,41-44]. 
 According to[44], findings derived from ER-β knock-out 
mice showed prostate hyperplasia and a myeloproliferative dis-
ease which were similar to human chronic myeloid leukemia. 
Transfection studies involving breast and colon cancer cells that 
are deficient in ER-β revealed that the addition of ER-β results in 
reduced cell proliferation either in culture or in vivo in xenograft 
studies[45-49]. ER-β has been found in transfection studies to sup-
press cell proliferation in a hormone- independent way, which 
leads to the conclusion that ER-β may act as a tumor suppres-
sor[45,47,48]. Various studies that target the effects of E2 on apop-
tosis revealed conflicting results. Some studies have pointed to 
inhibitory effects of E2 on growth of cells in lymphoma cells by 
activating apoptotic pathways[50,51]. Another study by[52] pointed 
to the enhanced apoptosis in osteoclasts by E2. Other studies 
showed contradicting findings. As an example, it has been re-
ported that E2 has an anti-apoptotic action on T-lymphocytes 
and monocytes in vitro. Furthermore, it can inhibit apoptosis in 
cardiomyocytes in vivo[53-55]. Other researchers showed that E2 
can control apoptosis pathways in cancer cells as well as nor-
mal cells[56,57]. E2 up- regulates Bcl-2 gene in ovarian epithelial 
cells[57]. 
 Other studies revealed that binding of E2 to ER-β can 
induce apoptosis[58]. Furthermore, ER-β up- regulates Fas-L in 
epithelial cells of ovary[59]. Other studies reported the induction 
of apoptosis of ER-β in prostate and ovarian cancer cells[36,37,60]. 
In vitro study employing epithelial cell lines showed that E2 pro-
moted cell survival through non-genomic signaling of ER-α and 
cell death through non-genomic signaling of ER-β[1].
 According to[61], when murine lymphoma cell lines 
were exposed to ER-β agonist, apoptosis was more likely to be 
induced. Taken together, the previous context showed that ER-β 
has, in general, a pro-apoptotic effect, while ER-α has an an-
ti-apoptotic effect. Furthermore, the responses depend on and to 
larger extent correlates with the expression of ER subtype. The 
existing literature does not give clear answers when the ER is 
likely to induce apoptosis or proliferation which opens the door 
for more studies. We think that future studies may point out to 
more diagnostic and therapeutic options which may depend on 
the individual context.

Expression of ERs in immune cells and their functional role
 Effects of ERs in lymphocytes: Several studies have 
emphasized the detection of the mRNAs and proteins of ER-α 
and ER-β in PBMCs and neutrophils[32,62]. It has also been re-
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ported that subcellular differences also exist, and CD4+ T cells 
express elevated concentrations of ER-α mRNA whereas B cells 
express largely ER-β mRNA[63]. Concerning protein level[44], re-
ported that ER-β is the dominant ER expressed in mature leu-
kocytes from peripheral blood, tonsils or spleen of healthy in-
dividuals. Taking into consideration that B cells are expressing 
more ER-β mRNA compared to ER-α mRNA, it has been found 
that various cell lines of lymphoma that give examples for lym-
phomas including Hodgkin lymphoma to greatly over express 
the proteins of ER-β, whereas the proteins of ER-α is either ex-
pressed in low levels or even no detectable[44,61]. In another study 
by[64], both ER-α and ER-β proteins were expressed in NK cells. 

Effects of E2 on lymphoid cells: Estrogens have significant ef-
fects on the innate and the adaptive immune system[65]. Other 
studies showed the effect of estrogens on thymus and bone mar-
row[66-68]. Furthermore, it has been found that estrogens have a 
suppressive effect on both B and T lymphopoiesis. As an exam-
ple, the formation of B lymphocyte selectively lowers the bone 
marrow of mice treated with E2[68], while other studies showed 
that ovariectomy of mice increased B lymphopoeisis[69,70]. An-
other study showed that E2 can impair the maturity of B cell 
maturation[71]. Other studies examining the effects of treatment 
with E2 on T cell populations revealed thymic involution with 
reduction of T lymphopoiesis[66,68,72]. Other studies depended on 
treatment using ER-α-selective agonist PPT showed thymic at-
rophy as well as important variations in the proportion of CD4/
CD8 in thymus which implies that ER-α can play a principal 
role in atrophy of thymus induced by estrogen[73]. According to 
a study by[74], treatment with E2 prevented T cell-dependent im-
mune reactions, whereas there was an improved antibody pro-
duction from B cells[75]. It has been explained that how the effect 
of treatment with E2 is mediated on T cell immune responses by 
a study of[76] who proposed a mechanistic explanation in which 
the expression of ER-α was detected in CD4 + CD25T cells and 
introducing physiological doses of E2 was able to increase the 
expression of Foxp3 in vitro and converted T cells from the CD4 
+ CD25phenotype into regulatory CD4 + CD25 + T cells. 

ERs and E2 in myeloid cells: Various studies showed the ex-
pression of ER-α and ER-β in some myeloid cells including 
monocytes, macrophages and dendritic cells (DC)[77-80]. The ex-
pression of ER-β has been shown to predominate in Monocytes, 
whereas ER-α is more expressed in macrophages[78]. The func-
tions of estrogens are varied in cells of the myeloid cell lineage 
that include maturation, differentiation and migration[80]. More-
over[81], indicated that E2 has certain effects on innate immune 
reactivity such as improved phagocytic capacity in neutrophils 
and phagocytes. Within this context[82], expressed their views in 
explaining the large variation seen in innate immune reactivity 
among men and women. 
 Other studies have indicated that E2 can stimulate the 
differentiation of DCs from bone marrow DC[83,84]. It is worth to 
mention that E2 can improve the role of presentation of antigens 
of DCs through over expressing MHCII[85,86]. The differentiation 
of DCs is prevented in ER-α knock-out bone marrow cells which 
points to a predominant role for ER-α in this process[83]. Another 
study has further demonstrated the need for ER-α in the produc-
tion of a Toll-like receptor of IFNa by plasmacytoid DCs[87]. 
 Taking into account the previous studies, it seems that 
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ERs and estrogens in inflammation
 It is well-known that the response to inflammation is a 
major function of the immune system[61]. This function is under 
the effect of E2 because E2 has inducing influences on immune 
system which explains why women are more resistant to infec-
tions compared with men[65]. Under inflammatory conditions, 
studies pointed to up-regulation of ER-β and down-regulation 
of ER-α in splenocytes. This phenomenon is further confirmed 
under hypoxic conditions in which immune and endothelial cells 
are accompanying inflammation and as a result, ER-β is up-reg-
ulated while the expression of ER-α is down-regulated[65]. 
 Previous studies have shown that E2 has effects on 
pro-inflammatory transcription factors and cytokines. Further-
more, the activation of immune cells resulting from either mi-
crobial origin or signals induced by inflammation is controlled 
by stimulation of the nuclear factor-kappa B (NF-jB), the re-
quired pathway for the normal responses by immune cells[88]. In 
another study, researchers have shown that both ER-α and ER-β 
prevent the activity of NF-jB based on E2 in cardiac myocytes in 
vitro[89]. Furthermore, a selective ER-β agonist ERB-041 inhibits 
the activity of NFjB in peritoneal macrophages[90]. Taken togeth-
er, both ERs inhibit NFjB activity in different cell types. Several 
studies have put emphasis that the expression of adhesion mol-
ecules to be regulated by E2 and the outcomes are dependent on 
the concentration of E2. These studies denoted that E2 levels at 
pregnancy suppress the expression of membrane E-selectin, and 
intercellular adhesion molecule-1[91,92]. Low levels of E2 up-reg-
ulate the expression of the adhesion molecules[65]. E2 can regu-
late expression of both pro-inflammatory and anti-inflammatory 
cytokines. E2 has various effects on the formation of reactive 
oxygene species (ROS) so that increased levels of E2 lower the 
formation of ROS, while either ovariectomy or low levels of E2 
increase the production of ROS[65]. 
 The effects of E2 on the expression of inflammatory 
(NO) synthase (iNOS) have been reported. Elevated levels of 
E2 have been shown to inhibit NO production stimulated by cy-
tokine[93]. Another study pointed to the involvement of ER-α in 
the inflammation of vascular tissues which is associated with 
diabetes indicating that E2 decreases the level of (iNOS) in the 
aorta via ER-α[94]. The relationship between chronic inflammato-
ry diseases and development of fibrosis has been established[95]. 
Other studies showed that E2 has effects on functions of fibro-
blasts and mechanisms of fibrosis. According to[96], E2 up-reg-
ulates basic fibroblast growth factor and the tissue inhibitor of 
MMPs (TIMP)[97]. Another study found that E2 could suppress 
a hepatic fibrosis[98,99]. Proposed an explanation of suppressed 
fibrosis by E2 in which hepatic stellate cells express ER-β, but 
not ER-α. Moreover, E2 has the ability to inhibit the fibrosis of 
heart through ERb in vivo[35]. High levels of estrogens can inhibit 
inflammation through making a reduction in pro-inflammatory 
pathways[65]. It is worth mentioning that ER subtype that is ex-
pressed in individual cell determines how the response to E2 will 
be by inflammatory cells.

The roles of ERs in autoimmunity 
 Estrogens have been shown to be one of the risk factors 
of autoimmunity; women are more likely to be affected by au-
toimmune diseases during the stages of fertility compared with 



men. It is greatly considered that both B and T lymphocytes to 
be crucial in the initiation of autoimmune diseases[65]. E2 has its 
influences on lymphoid and myeloid cells which can be mediat-
ed through the expression of ERa and ERb. Various trials were 
made to demonstrate the roles of estrogens and ERs in autoim-
mune diseases. One of these trials was made in murine lupus 
models indicated that early removal of ovary of NZB/NZW f1 
mice was able to reduce the progression of lupus. It has been 
shown through two studies that breeding of the ERa/genotype 
with three different murine lupus-prone strains provided protec-
tion against renal pathology by lacking ERa[100,101]. Also, a study 
showed that E2 has the ability to lower the tolerance of B-cell by 
ERa[71]. 
 In another study by[44], the results showed that the defi-
ciency of ERa led to the development of autoimmunity, whereas 
the use of ERa agonist PPT has therapeutic effects on some auto-
immunity diseases including systemic lupus erythematosus and 
rheumatoid arthritis. In their study[102], showed that the removal 
of ovary has impacts on lupus progression which were reversed 
by treating with E2. The results also showed that the use of E2 
or the ERa selective agonist was able to ameliorate the clinical 
output of arthritis compared to control group. It seems that these 
studies did not link the role of estrogens with infectious diseases 
together to participate to autoimmune diseases. Here, we would 
like to recommend future diseases to focus in this point because 
solving the estrogen problem would be an interesting area to 
help in autoimmune remedies. 

The roles of ERs in lymphoid tumors
 According to[15], numerous tumors exhibit their E2 de-
pendency including endometrial and breast cancers. Irrespective 
to the fact that hematological malignancies do not depend on 
hormones to be initiated, it seems that lymphoid malignancies 
tend to be under the effect of estrogen as indicated by epidemio-
logical studies which pointed to gender variations regarding in-
cidence and prognosis[43,103,104]. Other studies pointed to the exis-
tence of an association between reproductive hormones and oral 
contraceptives with lowered risk factor among female patients 
with Non-Hodgkin lymphomas[4,16]. In general terms, studies 
showed that men are more likely to develop acute lymphocytic 
leukemia[43,103] and CLL[103] compared with women. Other stud-
ies showed a higher incidence of lymphoid neoplasm subtypes 
in males compared with females, among these examples are 
Burkitt lymphoma and mantle cell lymphoma, whereas in T-cell 
neoplasms, no significant differences were reported among fe-
males and males[43].
 In the study of[61], the authors reported an evidence to 
show the effect of E2 on growth of lymphoma so that the mice 
grafted with T cell lymphoma cells, the tumor size was great-
er in males compared with females. The expression of ERb has 
been reported in both Burkitt’s lymphoma cell lines[61] and PB-
MCs from CLL patients[61]. Actually, it can be implied from such 
findings that the agonist of ERb can influence lymphoma and 
leukemia cells. It is believed that the consideration that wild-
type ERb is expressed in lymphoid tumors as well as ERb2 in 
CLL patients[61]. From a clinical point of view, the expression 
of ERb2 may indicate poor prognosis. In another study by[31], 
it was found that the expression of ERb2 was able to increase 
the growth of cancer cells in prostate using mice model. The 
expression of ERb2 has been reported in low levels in mammary 

glands at physiological conditions, whereas its expressed levels 
have been significantly increased in invasive mammary carcino-
mas[105]. The localization of ERb2 as either only in cytoplasm, or 
both cytoplasmic and nuclear plays a crucial role in evaluating 
the prognosis so that the involvement of cytoplasmic localiza-
tion implies poor prognosis[106]. 
 In their study[107], pointed to a very interesting finding 
when the ERs were found localized in membranes. The authors 
expressed their thoughts as ERs have a role in differentiation of 
hematopoietic cells. In a previous study, ERb knockout mice de-
veloped myeloproliferative disease, lymphoid proliferation, and 
prostate hyperplasia[44]. It can be extracted from these findings 
that ERb has a potential to inhibit the growth of myeloid cells 
and accordingly it can be considered as a tumor suppressor in 
hematological malignancies. The role of estrogens in lymphoid 
tumors looks to be independent from gender which highlights 
the need for future research to address the molecular aspects as-
sociated with estrogen. 

The therapeutic potential of ERb agonists in treating cancers 
Based on previous findings in which ERb is highly expressed 
in lymphoid cells, and the finding of anti-proliferative roles of 
ERb pointed to the possibility of using ERb agonists in treating 
proliferative hematological disorders. Several ERb selective ag-
onists have been produced but not seriously tested against hema-
tological tumors[61,108]. It was interestingly to find that no cross 
reactivity is found between ERB and ERa[61]. The application of 
ERa agonist did not exhibit any impacts on the growth of lym-
phoma[61]. It can be extracted from these findings that ERb ago-
nists can be used as a therapy for lymphomas expressing ERb. 
 Other studies showed that some natural compounds 
may prefer ERb which may makes a new line of therapeutics 
for hematological tumors. As an example, genistein, has affinity 
for ERb can arrest G(2)/M cycle and increase the differentiation 
of acute myeloid leukemia cells[109]. It can induce apoptosis in 
T-cell leukemia cells[110], it can also prevent the growth of canine 
lymphoid cell lines[111]. The study of[12] showed that the improved 
expression of ERb in cell lines of breast cancer arrested a G2 
cell cycle. In another study by[112], it was found that the ERb ag-
onist DPN exhibited antigrowth impacts on breast cancer cells. 
Other studies have demonstrated the expression of ERb in pros-
tate cells either normal or malignant cells, or accordingly, it is 
plausible to use ERb agonists in treating prostate malignancies. 
There is evidence from in vitro studies showing that treatment 
of prostate cancer cell lines with ERb was able to lower growth, 
invasiveness, and induced apoptosis in these cells[36,37,113]. 
 Other studies showed that the use of ERb agonist DPN 
decreased the potential of tumorigenesis of intestine using Ap-
c(Min/+) mice[114]. Another study reported that DPN was able to 
prevent colon cancer cells expressing ERb[115], whereas medullo-
blastoma cells were inhibited from growth in vivo using a mouse 
model[116]. In another study, the ERb agonist KB9520 showed 
antitumorigenic impacts using rat models of cholangiocarcino-
ma[117]. Although the previous studies showed the potential of us-
ing ERb agonist in treating cancers, there is still a need for more 
studies to explore more mechanisms of action and to specify the 
exact pathways for optimal use of this promising line of cancer 
therapy. 
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Discussion 

 The present study reviewed the literature for the es-
trogen and ERs. Estrogen has multiple roles under physiolog-
ical conditions including signaling roles in cell growth, repro-
duction, development and differentiation. Estrogens exert their 
effects through two distinct estrogen receptors, ER-α and β to 
which E2 binds strongly[3]. It seems that it is difficult to put the 
actions or roles of estrogens and ERs in one frame. There is a 
need in future research to identify the conditions in which the 
estrogens behave and what are the stimulating factors? 
 The expression of ERs depends mainly on the type of 
ER. Although estrogen mainly acts in reproductive system, its 
receptors are selectively expressed in different tissues. ER-β is 
highly expressed in the ovary, central nervous system, cardio-
vascular system, lung, male reproductive organs, prostate, co-
lon, kidney and the immune system[21,22]. A debate concerning 
the roles of estrogen has been discussed and ended with contra-
dicting findings in which it was thought that it increases the pro-
liferation and growth to increase the growth of the breast, uterus, 
and prostate, which implies the possibility to induce carcinogen-
esis[36-40]. On the other hand, other contradicting findings showed 
that Other contradicting findings showed that estrogens through 
ER-β repress proliferation and induce differentiating stem cells 
in various tissues[39,40-44]. 
 According to the context that ERb is highly expressed 
in lymphoid cells, and the finding of anti-proliferative roles of 
ERb, the potential to use ERb agonists in treating proliferative 
hematological disorders has been raised[112,114,115,117]. Estrogens 
through its receptors interact with the nucleus material in the 
cell and activate other genes such as BCL2 gene which, in turn, 
induces the production of BCL2 protein in cytoplasm and makes 
the cell ready for division and proliferation. In this context, we 
may ask a large question which we do not observe in studies 
about the source and concentration of estrogen. If estrogen 
comes from other sources into the body, its concentration may 
become more than under control in cellular processes and it is 
plausible to think of extra actions of estrogens which may ex-
ceed metabolic needs and makes it involved in carcinogenesis. 
Accordingly, we think that a lot of further research is still re-
quired to explore the role of estrogen.
 
Conclusions 

 The function of estrogen seems to be determined by the 
estrogen receptor which is expressed in various tissues with rela-
tively predominant forms. The function of estrogen is varied and 
may look contradicted. There is a potential to use ERb agonists 
in treating proliferative hematological disorders.
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