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Introduction 

	 Over the last fifteen years, international initiatives have 
designed more potent, new antiretroviral drugs(ARV) to reduce 
HIV infection and HIV-related deaths[1]. As a result, between 
2000 - 2015, HIV infection rates fell 35%, and Acquired Im-
mune Deficiency Syndrome (AIDS)-related deaths fell 27%[1].  
Despite these recent successes, HIV infection and AIDS contin-
ue to be a challenging healthcare problem in the 21st century. 
According to a report by the American Foundation for AIDS 
Research, over 36 million people worldwide continue to live 
with HIV-1 and 2.1 million new HIV infections were report-
ed in 2015[1,2]. Of those newly infected individuals, 47% were 
women and 8% were children less than 15 years old[1]. Young 
people between the ages of 15 and 24 accounted for 35% of all 
new adult infections, with infection rates of young women in 
this age group accounting for 20% of the global sum of HIV 
infections[1,2] In sub-Saharan Africa, 15 - 24 year old females are 
eight times more likely to be infected with HIV than their male 
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Abstract
	 HIV continues to be one of the greatest challenges facing the global health 
community. More than 36 million people currently live with HIV and, in 2015 2.1 
million new infections were reported globally. Pre-Exposure Prophylaxis (PrEP) 
prevents HIV infection by inhibiting viral entry, replication, or integration at the pri-
mary site of pathogenic contraction. Failures of large antiretroviral drug (ARV) PrEP 
clinical trials indicate the current insufficiencies of PrEP for women in high-risk ar-
eas, such as sub-Saharan Africa. A combination of social, adherence, and drug barri-
ers create these insufficiencies and limit the efficacy of ARV. Nanotechnology offers 
the promise of extended drug release and enhances bioavailability of ARVs when 
encapsulated in polymeric nano-particles. Nanoparticle encapsulation has been eval-
uated in vitro in comparative studies to drug solutions and exhibit higher efficacy 
and lower cytotoxicity profiles. Delivery systems for nanoparticle PrEP facilitate ad-
ministration of nano-encapsulated ARVs to high-risk tissues. In this mini-review, we 
summarize the comparative nanoparticle and drug solution studies and the potential 
of two delivery methods: thermosensitive gels and polymeric nanoparticle films for 
direct prophylactic applications.

Mini Review												              Open Access

Nanoparticle Encapsulation for Antiretroviral Pre-Exposure 
Prophylaxis

counterparts[2]. Greater than 80% of HIV infections are contract-
ed through sexual transmission and 86% of female transmission 
has been attributed to heterosexual intercourse[3,4]. Factors such 
as mode of viral transmission, female physiology, and social, 
economic, and legal disadvantages contribute to increased rates 
of HIV infection in women. HIV/AIDS remains the leading 
cause of death for pre-menopausal women worldwide[5]. Given 
international efforts to reduce the annual global HIV infection 
rates by 90% by 2030[1], highly efficacious therapeutic and pre-
ventative HIV therapeutic options must be available to at-risk 
populations, particularly women.
	 Post-infection HIV treatment using daily, highly active 
oral delivery of combination antiretroviral drug (ARV) therapies 
has significantly reduced HIV infection rates when such oral 
therapies are readily accessible and are reviewed elsewhere[6]. 
ART has been shown to significantly decrease the incidence of 
HIV transmission among serodiscordant couples when thera-
pies are followed consistently by patient populations[7]. Howev-
er, current oral therapies for (PrEP) are costly and are often in 
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limited supply in developing countries and/or to at-risk popula-
tions[8]. Pre-Exposure Prophylaxis (PrEP) holds the promise of 
eliminating new infections and thereby the associated risks of 
HIV infection. Consequently, there is a need for the develop-
ment of innovative, cost-effective, and highly efficacious PrEP. 
Nanotechnology has garnered considerable interest in the field 
of HIV PrEP because of its potential to extend the release, target 
and increase cellular uptake, and improve the chemical, enzy-
matic and metabolic stability of therapeutic drugs[9,10]. Various 
types of nanocarriers such as dendrimers, liposomes, polymer-
ic nanoparticles and nanosuspensions are being evaluated for 
PrEP[11]. Vaccines are another promising area of innovative PrEP 
research and development but are beyond the focus of this re-
view. This mini-review article presents the history of and the lat-
est development in those nanofabrications showing promise for 
female PrEP with specific emphasis on nanoparticle fabrications 
involving antiretroviral drugs (ARVs).

Use of antiretroviral therapy (ART) for PrEP in females
	 For a decade, it has been recognized that new infec-
tions of HIV must be reduced and that effective PrEP will be 
required to reach the worldwide goals for reducing the number 
of HIV infected individuals. The objective is to design PrEP that 
will block HIV at the mucosal membrane without causing tissue 
irritation or carrying the risk of developing resistance to ARVs. 
In order to eliminate the possibility of resistance, initial PrEP 
design involved the use of vaginal microbicides such as deter-
gents, polyanionic inhibitors, or pH buffers that did not contain 
ARVs. Macromolecular entry inhibitors were largely unable 
to block HIV infection[12-14].  As concerns over drug-resistance 
waned[15], and awareness that women need access to cost-effec-
tive HIV prevention strategies increased, investigators focused 
on ARV-mediated prevention. ARVs acting before integration of 
viral genomic material into the host cells became the strongest 
candidates for preventative treatments[4,11]. Initially, two classes 
of reverse transcriptase inhibitors, nucleoside reverse transcrip-
tase inhibitors (NRTIs) and non-nucleoside reverse transcriptase 
inhibitors (NNRTIs), were the focus of PrEP efforts/strategies.  
Two nucleoside reverse transcriptase inhibitors, tenofovir diso-
proxil fumarate (TDF) and emtricitabine (FTC) were delivered 
orally for PrEP. Daily oral regimen of TDF demonstrated a 
48.9% reduction in HIV infection among injection-drug users[19]. 
Daily oral regimen of TDF/FTC (Truvada) showed similar re-
duction in the incidence of HIV infection (44%) in men who 
have sex with other men[20,21]. The high efficacy of Truvada (44 - 
75%) seen in clinical trials led to Truvada’s approval for PrEP in 
both men and women by the US Food and Drug Administration 
in 2012[18,20,22-24]. Importantly, these clinical trials established a 
correlation between plasma drug levels and prophylactic capaci-
ty of ARV PrEP. Seroconversions are frequently associated with 
low plasma drug concentrations in treatment groups suggesting 
that maintenance of plasma drug levels is important for PrEP 
efficacy[25]. Low plasma drug levels associated with a lack of 
adherence and observed in the FEM-PrEP and VOICE clinical 
trials where adherence was below 40% resulted in reduced effi-
cacy of TDF PrEP[26].
	 TDF was also formulated into a vaginal gel and evalu-
ated for pharmacokinetic, safety, and antiviral efficacy[16-18]. The 
focus of the well-known VOICE trial was to assess the effec-
tiveness of daily treatment with vaginal TDF gel and oral TDF 
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and oral TDF/FTC (Truvada) in preventing sexually transmitted 
HIV-1 infection in women. Results from VOICE reinforce the 
importance of adherence to PrEP regimens. No significant dif-
ference was seen between drug and placebo treatments either 
vaginally or orally.  Drug levels detected in the blood were low 
or absent for the majority of participants unless they were older 
than 25, married, or their sexual partner was older than 28[23]. 
CAPRISA 004 clinical trial investigated the efficacy of 1% TDF 
gel for PrEP revealing similar adherence-mediated effects. In 
this case, drug delivery specified for pre- and postcoital gel ap-
plications found the gel to be 39% effective in preventing HIV 
infection and concluded an overall efficacy of 54% in cohort 
with greater than 80% adherence. A subsequent study carried out 
over 2.5 years in 9 locations across South Africa demonstrated 
that adherence of high-risk female populations (> 70%) exhib-
ited enhanced PrEP for HIV, but only 20% of the overall sam-
ple size was in this cohort[27]. More recently, three double-blind 
placebo controlled randomized trials demonstrate that daily oral 
TDF-based PrEP is quite successful given adherence and detect-
able TDF-blood levels[28]. These three studies found that daily 
oral PrEP reduced the risk of HIV infection in women. The Part-
ners PrEP study included 1785 Kenyan and Ugandan women 
with HIV-infected partners. PrEP efficacy was 66% and 71%[29]. 
In the TDF2 study conducted in Botswana among heterosexual 
men and women, efficacy was 49% with a small sample size of 
557 women[18]. A tenofovir study in Bangkok (BTS) showed that 
PrEP reduced the risk of HIV infection in women by 79%[19]. All 
five studies demonstrate that acquisition of HIV occurs during 
periods of low or no adherence to PrEP.
	 Taken together, these studies demonstrate that partici-
pant adherence directly influences PrEP efficacy. Surmounting 
the adherence barrier necessitates the development of cost-effec-
tive, easily used, and long-lasting PrEP fabrications.

ARV loaded Polymeric Nanoparticles
	 Polymeric nanoparticles for ARV drug delivery can en-
capsulate various drug formulations for selective and enhanced 
drug delivery. Polymeric NP pharmacokinetic and material de-
velopment are reviewed elsewhere[12,30]. Nanoparticle sustained 
drug delivery is likely to reduce the required frequency of drug 
application for proper efficacy. Reducing dosing complexities 
and frequency are likely to increase treatment adherence and ef-
fectiveness while decreasing cost and high dosage toxicity. Cur-
rent developments of ARV-encapsulated NP treatments for PrEP 
typically utilized poly(lactic-co-glycolic acid) (PLGA) based 
prophylactic modalities. Other polymers such as Cellulose Ac-
etate Phalate (CAP) and Polycaprolactone (PCL) are being ex-
plored. Specific polymers, such as CAP, have anti-microbicidal 
function and may serve not only as a nanoparticle polymer but 
also enhance PrEP efficacy.  
	 PLGA is a common nanoparticle polymer. Studies 
suggest that PLGA-NPs undergo endosomal uptake allowing 
for delivery of encapsulated drug directly to cellular cytoplasm 
and thus enhancing ARV drug uptake into the cell[2,3]. Cellular 
in vitro assays examined the efficacy of ARV in solution verses 
encapsulation of ARV in PLGA-NPs. In many studies, encap-
sulation of ARV in PLGA-NP has shown increased prophylac-
tic efficacy of PLGA-ARV-NP as compared to ARV in solution 
alone.  Mandal et al., 2016 encapsulated FTC in PLGA-NPs via 
a water-in-oil-in-water emulsion method[31] (Table 1). In vitro 
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TZM-bl and human Peripheral Blood Mononuclear Cell (PBMC) assays demonstrated that PLGA-FTC-NPs significantly reduced 
FTC IC50 levels against HIV as compared with FTC solution[31,32]. PLGA-FTC-NPs protected PBMCs for up to 21 days post-HIV 
exposure[32]. 

Table 1: Nanoparticle encapsulated ARV for PrEP in vivo and in vitro using film and gel delivery modalities.
Prophylac-
tic Modality

ARV Drug Target Drug Target EE% a/AE%b Level of Study Duration of 
measurement

Results

PLGA/SA TFV NRTI Film AE: 53.5% ± 
4.9% b SVF 24 h

PLGA/SA-TFV-Film sus-
tained drug release (60% re-
leased in 24 hrs) (71)

PLGA IQP-0528 NNRTI/EI Film NR Macaques 24 h
In vitro: 51.65% ± 7.22% 
drug release at 24hrs; In vivo: 
(72)

PLGA EFV-Free 
TFV NNRTI-NRTI Film 96.8 ± 2.5% Female CD-1 

Mice 24 h In vivo: 2 hr. burst release, 
rapid drug decreases (70)

SLS-PCL DAP NNRTI NP Solution 97.6% ± 0.4% TZM/PBMC/
Mo-DC--T4 14 d

TZM-bl: no EC50 difference; 
PBMC: 6.8-fold decrease 
EC50; Mo-DC: 12.6-fold 
EC50 decrease; moderate in 
vitro cytotoxicity (46)

CTAB-PCL DAP NNRTI NP Solution 97.9% ± 0.3% TZM/PBMC/
Mo-DC--T4 14 d

TZM-bl: no EC50 difference; 
PBMC: 6.3-fold decrease 
EC50; Mo-DC:12-fold de-
crease EC50; high cytotoxic-
ity in all in vitro assays (46)

PEO-PCL DAP NNRTI NP Solution 97.6% ± 0.1% 
b

ICR 
mice-topical 24 h

TZM-bl: no EC50 difference; 
PBMC: 3.8-fold decrease 
EC50; Mo-DC: 6.81-fold 
EC50 decrease; In vivo: 9-fold 
increase DAP NP Vs. DAP 
Sol. At 24 hrs. (47)

PLGA EFV-
LPV/r NNRTI-PI/PI NP Solution

EFV: 79.5%, 
LPV: 79.8%, 
RTV:81%

TZM-bl 
indicator cells 48 h

Similar IC50 in combination 
NP than for each drug solu-
tion separately (42)

PLGA EFV NNRTI NP Solution 44.5% ± 2.7%a TZM-bl 
indicator cells 48 h  IC50: 54.6-fold decrease (35)

PLGA SQV PI NP Solution 43.8% ± 15.2% 
a

TZM-bl 
indicator cells 48 h  IC50: 1.65-fold decrease (35)

PLGA MVC-
ETR-RAL

EI-NNRTI-IS-
TI NP Solution

91.0 ± 9.9, 16.8 
± 2.6, 12.0 ± 
0.6 a

TMZ-bl 
indicator cells 48 h  

IC50: 8-fold decrease in com-
bination treatment relative to 
the free drugs in combination 
with one another (36)

PLGA FTC NRTI NP Solution EE: 50.6 ± 5.5 
% a

TMZ-bl 
indicator cells 24 h

43-fold decrease in IC50 in 
the PLGA-FTC compared to 
the FTC solution (32)

PLGA RPV NNRTI TMS 98 ± 0.7% b Hu-BLT 
Mice-Topical 7-8 weeks 50% protection n = 12 (65)

PLGA TDF NNRTI TMS 52.9% a Hu-BLT 
mice-topical 4 weeks 100% protection 4,24, all in-

fected at 7day time pt. (67)

CAP EFV NNRTI TMS EE: 98.1% ± 
1.2% b

TMZ-bl indi-
cator cells 3 d

Combination NP significant-
ly higher % antiviral activity 
compared to EFV solution at 
same concentration. (57)

32, 35, 36, 42, 46, 47, 57, 65, 67, 70-72
a	 Encapsulation Efficiency =	 [(Drugmeasured)/(Drugfabrication)]*100	
b	 Association Efficiency =	 [(DrugFabrication - Drugmeasured)/(DrugFabrication)]

	 Chaowanachan et al., 2013 examined the encapsulation of low-solubility ARV drugs. Efavirenz (EFV), a non-nucleo-
side reverse transcriptase inhibitor (NNRTI), and saquinavir (SQV), a protease inhibitor, were encapsulated in PLGA-NP. PLGA-
EFV-NP were loaded using single solvent emulsion evaporation fabrication[33,34]. PLGA-SQV-NP were formulated by nanopre-
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cellular compartments for as long as seven days in a HIV-1NL4-3 
challenged human T cell line as determined by sub cellular frac-
tionation and HPLC analysis. Only ritonavir solution was found 
at detectable levels in cells at seven days while combination NPs 
showed measurable drug levels in membrane, nuclear, and cy-
toskeletal fractions indicating sustained release of drug through 
NP delivery[38,42]. 
	 Polymer alternatives to PLGA such as poly(ε-capro-
lactone) (PCL) surface coated NPs were shown to enhance en-
capsulated drug bioavailability and intracellular retention[43-45]. 
Addition of Poly-Ethylene Oxide (PEO), Sodium Lauryl Sulfate 
(SLS), and Cetyl-Trimethyl Ammonium Bromide (CTAB) were 
surface modifications compared in PCL-NP fabrications. Each 
fabrication encapsulated dapivirine (DAP), a NNRTI, using a 
modified solvent displacement method[43,45] that yielded higher 
DAP association efficiencies (Table 1) than previously report-
ed with PLGA[46,47]. In TZM-bl assays infected with HIV-1 BaL 
virus, PEO-PCL-DAP-NP was less efficacious than free dapivir-
ine solution while the two other surface treatments (SLS/CTAB) 
demonstrated lower EC50 values. However, CTAB surface coat-
ings were found to be 4-fold more cytotoxic than the free dapi-
virine solution. PEO/SLS-PCL demonstrated significantly less 
cytotoxicity than free drug.  Anti-HIV efficacy of these NPs us-
ing PBMC assays challenged with HIV after 2 hrs NP treatment 
resulted in EC50 values in the nano-molar range, 3-7 fold lower 
than free drug[47,48]. PEO-PCL exhibited the lowest cytotoxic con-
centration (CC50) in PMBCs at 105 nM, half that of SLS-PCL and 
approximately 200-fold less than CTAB.  These NPs inhibited 
HIV infection of monocyte-derived dendritic cells (Mo-DC) and 
CD4+ T cell co-culture for 14 days[49,50]. Single drug applications 
to Mo-DC showed EC50 for NP-encapsulated DAP at 7-12 fold 
lower than free DAP. Cytotoxicity of NP treatments to Mo-DCs 
mirrored PBMC assays with CTAB-coated NP (PCL-CTAB) 
having the highest cytotoxicity (CC50: 1,728 ± 142nM), 20-fold 
less than PCL-SLS (CC50: 38, 442 ±7, 920nM), and 40-fold less 
than PCL-PEO (CC50: 76, 984 ± 8, 467nM)[38]. PEO-PCL-DAP 
NPs were chosen for in vivo pharmacokinetic analysis due to 
their enhanced inhibition of infection and comparably low cy-
totoxicity profile[51]. Application of PEO-PCL-DAP NP or free 
DAP solution intravaginally to female mice showed enhanced 
retention of NPs in vaginal fluid. PEO-PCL-DAP NP retained 
drug levels above the previously established drug level for DAP 
for 24hrs while free DAP solution maintained threshold levels 
for 4 hrs. These results indicate the extended protective capacity 
of DAP NPs in vivo[51,52]. 
	 Another nanoparticle polymer under investigation for 
PrEP is Cellulose Acetate Phthalate (CAP). CAP is unique to 
other functionally inert polymers because CAP has anti-micro-
bicial properties that inhibit HIV-1 entry. CAP has been shown 
to bind to gp 120 and to gp 41 on HIV and to form six-helix 
bundles with R4 and R5 tropic viruses[53,54]. CAP also may de-
stroy viral particles by stripping envelope glycol-proteins and 
causing HIV[53-55]. CAP is pH a sensitive polymer that depolym-
erizes at pH higher than 6.2[56].  Since vaginal mucosal pH is 
lower than 6.2, CAP-NPs are likely to remain stable in the acidic 
pH environment. CAP-EFV-NPs were formulated by nano-pre-
cipitation method and yielded an EFV entrapment efficiency of 
98.1% ± 1.2% (Table 1)[57]. Short term (4 hr) and long term (3 
day) PrEP of CAP-EFV-NPs against HIV-1NL4-3 challenge were 
assessed in vitro using TZM-bl assays. CAP-EFV-NPs signifi-
cantly reduced HIV infection at concentrations below 50 ng/mL 

cipitation[35]. Individually, PLGA-EFV-NP and PLGA-SQV-NP 
showed increased efficacy over their respective free-drug solu-
tions in TZM-bl indicator cell assays following 24hr pretreat-
ment.  PLGA-EFV-NP and PLGA-SQV-NP showed significant-
ly reduced ARV IC50 levels against HIV as compared to drug in 
solution (Table 1). Synergistic effects with free tenofovir (TFV) 
were also evaluated using TZM-bl cells by applying 1:1 equi-
molar IC50 drug concentrations at free EFV/SQV:TFV and PL-
GA-EVF/PLGA-SQV:TFV ratios. PLGA-EFV/TFV showed a 
3-fold decrease in combined IC50 and PLGA-SQV/TFV exhibit-
ed a 20-fold decrease in combined IC50 over their respective free 
drug treatments[35] indicative of increased drug delivery to cells 
by nanoparticles.
	 To examine the potential synergistic anti-HIV activity 
of combination ART in nano-particle fabrications, encapsulation 
of single, dual or triple drug combinations of the entry inhibitor 
maraviroc, (MVC), the NNRTI etravirine (ETR), and the ISTI 
raltegravir (RAL) into PLGA-NPs were developed[36] (Table 1). 
Drugs were encapsulated in PLGA using an emulsion-solvent 
evaporation protocol (Table 1). Single-encapsulation method 
avoids loading complexities often seen when nanofabricating 
drugs with different physiochemical profiles[37]. PrEP efficacy of 
PLGA-encapsulated treatments against HIV-BaL was examined 
using TZM-bl assays[35]. Only ETR-NP treatments exhibited de-
creased IC50 values while MVC-NP and RAL-NP had increased 
IC50 values compared to free-MVC/RAL. Tandem treatments of 
RAL-NP/MVC-NP, MVC-NP/ETR-NP, and ETR-NP/RAL-NP 
were evaluated using TZM-bl in vitro assays. Only ETR-con-
taining fabrications showed improved efficacy, with 10-fold 
reduction in IC50 for MVC /ETR-NP (IC50:0.38nM) and RAL/
ETR-NP (IC50: 0.40nM) paired treatments compared to the ETR 
solution (ETR-Sol) combined with MVC-Sol (IC50:3.02nM) 
and RAL-Sol (IC50: 4.21nM). ETR-NP combinations were also 
three times more efficacious in blocking cell-cell HIV trans-
mission. Drug synergy was only observed when ETR was 
paired with RAL or MVC and encapsulated into a polymeric 
nano-formulation. Interestingly, triple NP treatments did not 
show any increased potency over the double drug combinations 
(IC50:0.40nM)[36]. However, triple combination NP treatments 
were associated with higher intracellular concentrations than 
free-drug triple combination as measured by LC-MS/MS. Tri-
ple combination NP treatments were also protective against RT-
SHIV challenges in macaque cervico-vaginal explants tissue[34]. 
Differential encapsulation efficiencies for RAL were observed in 
fabrication of combination PLGA-EFV-RAL NPs. Oil-in-water 
emulsion with PLGA: Pluronic 127 at 1:2 w/w ratio resulted in 
EFV entrapment efficiency of 55.8% and RAL at 98.2% (Table 
1)[38]. Despite different encapsulation percentages, the combi-
nation RAL-EFV-NPs showed lower inhibitory concentrations 
than drug solutions in in vitro TZM-bl assays (Table 1)[38].
	 Multiple drug encapsulations of efavirenz (EFV) 
boosted by two protease inhibitors lopinavir/ritonavir (LPV/r) 
in PLGA-NPs using an emulsion-solvent-evaporation method 
with a high-pressure homogenization component to increase 
encapsulation efficiency were designed[38]. Encapsulation effi-
ciency of EFV, LPV/r were 81.0, 79.8, and 79.5%, respective-
ly (Table 1)[38,42]. TZM-bl cells inoculated with HIV-1NL4-3 after 
treatment with PLGA-EFV-LPV/r NPs 24 hr prior to infection. 
IC50 values for all encapsulated ARTs were in the nano-molar 
range (Ritonavir: 14.01nM, LPV: 16.54nM, EFV 30.73nM). 
EFV and LPV/r delivered by PLGA-NPs remained in different 
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compared to EFV drug solution[57]. At 3 days the EFV solution 
had significantly lower antiretroviral activity compared to CAP-
EFV-NPs treatment at equivalent concentrations (5 ng/mL)[57]. 
CAP-EFV-NPs reduced the cytotoxicity of EFV on HeLa cells 
with significantly higher cell viability at 48 h and 96 h[57]. CAP 
may be another cost-effective polymer option for NP synthesis 
and PrEP.

ARV loaded Polymeric NPs in TMS gel
	 For ease of topical application to reproductive tissues 
some NP fabrications have utilized thermosensitive (TMS) gels. 
Topical gels coupled with polymeric NP encapsulated ARVs 
may offer direct application to principal sites of HIV exposure 
prior to sexual intercourse, ensure uniform drug application, 
and control drug kinetics for elongated release. Thermosensi-
tivity modulates rheological properties by increasing viscosity 
as a function of increasing body temperature upon application 
to facilitate delivery and enhance vaginal retention[58,59]. Mech-
anisms for gelation have been explored[60]. Osmolarity is an im-
portant consideration for gels as failures in large clinical trials 
including CAPRISA-004 have been attributed to hyperosmolar 
gels causing inflammation and increased susceptibility to HIV-1 
infection[61]. Combinations of pluronic polymers (F127/F68) are 
used to tailor the rhelogical properties with citrate-buffered NP 
solutions, DMSO, and N-Methyl pyrrolidone[38] (Figure 1). Rec-
ommended values of TMS gel fabrications are 380-1200 mOsm/
kg[62-64]. Initial gel fabrications were analyzed using in vitro cell 
assays that determined the delivery/translocation of Rhodamine 
6G labeled PLGA-NPs (PLGA-Rhod6G-NP) through thermo-
sensitive gels into HeLa cells. Fluorescence of PLGA-Rhod6G-
NP was observed in HeLa cells after 30 minutes of incubation 
showing rapid release and uptake of NPs into cells.  Rhodamine 
6G fluorescence was maintained for up to seven days in vitro[38]. 
PLGA-Rhod6G-NP delivered to the vaginal tissues of human-
ized mice showed uniform distribution in vaginal tissues. PL-
GA-Rhod6G-NP was specifically localized in the vaginal epi-
thelium for up to 24 hours[65].  As proof-of-concept experiments, 
CAP-EFV-NP were incorporated into TMS and examined effi-
cacy[57]. HIV-1NL4-3 antiviral efficacy was measured in vitro using 
TZM-bl assays following CAP-EFV-NP-TMS, CAP-NP-TMS, 
and EVF-TMS pre-treatment. TZMbl cells were challenged 
with HIV-1 four hours post-treatment and CAP-EVF-NP-TMS 
showed higher efficacy with 90% antiviral activity at 500pg/
mL of EFV. These studies indicated enhanced efficacy of CAP-
ARV-NP-TMS and expanded the study of TMS delivery to 
ARVs more likely to be used in human clinical studies[57].
	 In vivo efficacy of PLGA-ARV-NP-TMS has been 
recently demonstrated in humanized mice. PLGA-Rilpivirine 
(RPV) –NPs were formulated by encapsulation using ion-sol-
vent-evaporation technique for incorporation into TMS gel[66]. 
Kovarova et al., 2015 achieved 98% RPV association efficiency 
and embedded their NPs in 20:1 Pluronic F127:F68 ratio TMS 
gel[65]. Humanized BLT mice treated with PLGA-RPV-NP-TMS 
(17.5μg RPV) were completely protected when challenged with 
high dose HIV-1RHPA 1.5 hrs post-application. Only half of these 
mice were protected from HIV challenge 24 h after applica-
tion of PLGA-RPV–NPs-TMS (Table 1) as determined by vR-
NART-PCR analysis. Further, vDNA analysis 7-8 weeks after the 
HIV challenge confirmed the seroconversion results from plas-
ma vRNA by RT-PCR analysis[65]. Destache et al., 2016 exam-
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ined TMS gel fabrication using PLGA-TDF –NPs. PLGA-TDF 
–NPs were encapsulated using an oil-in-water emulsification[12]. 
An additive ion-pairing agent yielded a TDF encapsulation effi-
ciency of 52.9% (Table 1)[67], significantly higher than the previ-
ously reported[36,37] due to its water soluble properties. TMS was 
fabricated with the modification of neutral 7.4 pH PBS instead 
of citrate buffer[50]. TDF-NP-TMS gel with three concentrations 
of TDF (0.1%, 0.5%, 1% w/v TDF) were individually applied 
intra-vaginally to Hu-BLT mice. Following TDF-NP-TMS treat-
ment mice were challenged with 2 transmission/founder HIV-1 
strains at three time points. The four hour (n = 4) and 24 hour 
(n = 6) challenge groups showed 100% protection against HIV-
1 challenge as determined by plasma viral load (pVL)[67]. All 
mice challenged at seven days showed HIV-infection at 14 days 
post-inoculation, signifying TDF-NP-TMS gel capacity for in-
termediate protective capacity, but, currently, not for longer time 
durations (>24hrs). 

Figure 1: Fabrication of thermosensitive gel with NP-encapsulated 
ARVs for vaginal application of PrEP to high-risk tissues. ARVs en-
capsulated in polymeric nano-particles using oil-in-water emulsion 
technique with the organic phase comprised of ARVs, DMSO, N-meth-
yl-pyrrolidone, and ethyl acetate emulsified in ultrapure water. ARV-
NPs are prepared in a citrate buffer with the addition of Plurionic F127 
and F68 at a 20:1 ratio to the buffer for gelation. The solution is set 
overnight in a cooled environment. pH modifications are made for 
CAP-NP and PLGA-ARV-NP fabrications along with glycerol addition. 
Black-NPs, Red: ARVs, Blue: polymer[38].

ARV loaded Polymeric NPs in film 
	 Films serve as another platform to enhance the topical 
delivery of ARVs encapsulated in NPs to primary sites of HIV-1 
exposure. Films offer some advantages to gels since films avoid 
the need for an applicator and reduce leakage issues[70]. Clini-
cal trials of film-encapsulated dapivirine indicated the efficacy 
of these treatments in maintaining plasma drug levels compa-
rable to that of gel fabrications[74]. Using solvent casting with 
glycerin as a plasticizer, prepared films of PLGA/stearylamine 
(SA)-Tenofovir-NPs were investigated for efficacy[71]. PLGA/
SA-Tenofovir-NPs were produced by double emulsion/solvent 
evaporation and demonstrated much higher NP-drug association 
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efficiency (PLGA/SA: 53.5 ± 4.9%) than pure PLGA-based NPs 
(18.5 ± 2.5%)[71]. NP-embedded films were thicker and weaker 
than pure films, potentially complicating fabrication, handling, 
and applications, but they maintained minimum pharmaceutical 
thresholds. Like gels, the physiochemical properties of films 
must conform to physiologic osmolarity and pH levels to ensure 
safe vaginal applications[70,71]. PLGA/SA-Tenofovir-NP-film 
formulations were within physiologic thresholds[71]. Tenofovir 
release was sustained further in Tenofovir-NP-film fabrications 
compared to Tenofovir-NP and Tenofovir-film fabrications (Ta-
ble 1). 

Figure 2: Fabrication of polymeric film with NP-encapsulated ARVs 
embedded into film for vaginal application of PrEP to high-risk tissues. 
Polymeric excipients HPMC and PVA were combined at a 4:1 ratio in 
a solution to 3% w/w of water containing 90% excipient polymers and 
10% additional glycerin. ARV encapsulated PLGA NPs were added to 
the polymer-glycerin solution immediately before casting in 12 cm X 
12 cm polystyrene molds[70-73].

	 Machado et al., 2016 examined PLGA-EFV-NPs em-
bedded with tenofovir drug solution in polymeric films.  PLGA-
EFV-NPs were fabricated by emulsion-solvent-evaporation[46] 
and encapsulation efficiency of EFV was high (Table 1)[70,71]. 
EFV exhibited sustained release in vitro from NP-film fabrica-
tion with 40% burst release at one hour and sustained release at 
20% over the next 24h in simulated vaginal fluid (SVF). Non-
gel EFV-NP treatments released at a much faster rate indicat-
ing the potential of the film-matrix to extend NP drug release in 
SVF. PLGA-EFV-NP/TFV-films examined in vivo using female 
CD-1 mice showed enhanced retention of TFV for two hours 
but overall rapid decreases in drug concentration. Similar de-
creases have been observed with intra-vaginal tablet-tenofovir 
drug formulations in macaques and rabbits[75,76]. EFV concen-
trations were also sustained at early time points (30 min) using 
NP-EFV/TFV-solution films compared to EFV solution/TFV 
solution-film formulations, indicating the ability of NPs in films 
to elongate drug release of both EFV and TFV[71].
	 Film fabrication differing in PVA: HPMC polymer ex-
cipient ratio has been designed. Polymer film embedded with 
IQP-0528, an NNRTI with entry inhibiting capabilities, was 
encapsulated in PLGA-NPs (PLGA/Eudragit S100-IQP-0582-
NPs) by double emulsion[77]. Films were optimized for physi-
ologic physiochemical properties and drug loaded to 1.5% wt/

wt (drug/film)[73,78]. In vitro drug release was measured in con-
tinuous flow in-line Franz cells[78,79] and showed significantly 
elongated release of IQP-0528-NP from films (24hr: 51.65% ± 
7.22% release) compared to free IQP-0528 films (1hr: 100% re-
lease). However, in vivo pharmacokinetic analysis on pigtailed 
macaques found that median drug levels at 24hrs were higher in 
the free-IQP-0528 films as opposed to the IQP-0528-NP-films 
(Table 1)[72]. All drug levels were well above IQP-0528 in vitro 
IC90 value (0.146 μg/mL)

[80] in the distal and proximal vaginal 
fluid indicating uniform coverage and enhanced retention of 
drug in the vaginal environment[72].
	 Films have shown mixed results as a NP delivery mo-
dality. In vitro models with PLGA/SA-TFV NPs and PLGA-
EFV-NPs both showed elongated release compared to free-drug 
film fabrications (2 film articles). However, in vivo pharmacoki-
netic studies using PLGA-IQP-0582-NPs exhibited drug clear-
ance rates similar to that of the IQP-0582 molecule in solution. 
Currently, there are no studies directly comparing gels and films 
as delivery systems for ARV-NPs. 

Conclusion  

	 Recent clinical studies have shown that PrEP can be 
highly efficacious given patient adherence. Widespread use of 
PrEP must be cost-effective and stable. New highly efficacious 
PrEP that can be delivered to at risk populations must be devel-
oped. Nanoparticle fabrications of ARVs delivered in thermo-
sensitive gels or polymeric films may provide a means for low 
cost, highly effective PrEP and is an important goal of current 
PrEP research. There is an increased need for studies investigat-
ing new prophylaxis for women[21]. Prophylaxis that enhances 
current nanoparticle technology to deliver higher and sustained 
concentrations of ARV drugs is likely to provide enhanced effi-
cacy.  Future studies will show the viability of nanoparticle fab-
rications for PrEP.
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Table 2: Abbreviations.
Abbreviation Name
ART Anti-retroviral therapy
ARV Anti-retroviral
AZT/ZDV Zidovudine (NRTI)
EFV Efavirenz (NNRTI)
3CT Lamivudine (NRTI)
LMV Lamivudine (NRTI)
Lf Lactoferrin (NP)
PEO Poly(ethylene oxide)
PCL Poly(ε-caprolactone)
Hu-BLT humanized bone marrow-liver-thymus mice
PLGA Poly(lactic-co-glycolic acid)
TDF Tenofovirdisoproxilfumarate (NRTI)
TFV Tenofovir (NRTI)
LPN/r Lopinavir/ritonavir PI
PI Protease Inhibitror
IN Integraseinihibitor
SQV Saquinavir (PI)
MVC Maraviroc (Entry inhibt)
ETR Etravirine (NNRTI)
RAL Raltegravir (IN)
TMS Thermosensitive Gel
CAP Cellulose Acetate Phthalate 
FTC Emtricitabine (NRTI)
RPV Rilpivirine (NNRTI)
Dapivirine Dapivirine (NNRTI)
EI Entry Inhibitor 
DAP Dapivirine
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