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Abstract
 Formulation of Generalized Electron Balance (GEB) for redox systems ac-
cording to Approach II to GEB does not require the prior knowledge of oxidation 
numbers of all elements in components forming a system, and in the species of the 
system thus formed. This formulation is involved with linear combination of charge 
and elemental and/or core balances related to the system in question. The skillful 
choice of multipliers for the balances on the step of purposeful formulation of this 
linear combination allows for to find important regularities for electrolytic systems of 
different degree of complexity. These multipliers are related to the oxidation numbers 
of the elements; this regularity is important in the context of the fact that the oxida-
tion number is the contractual concept. This property is valid for redox and non-redox 
systems. In this context, oxidation number is perceived as the derivative/redundant 
concept. The paper indicates the close relationships between different rules of con-
servation and indicates huge possibilities inherent in the generalized approach to 
electrolytic systems (GATES), and GATES/GEB in particular.
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Introduction

 The paper refers critically to some fundamental con-
cepts, known to a wide community of chemists from early stag-
es of education. It concerns the terms: oxidation state/number; 
oxidant and reductant; equivalent weight. All those concepts, 
defended by IUPAC, raise many reservations and controver-
sies, expressed in our review papers issued in recent years[1-5], 
and discussed elsewhere[6-8]. All these terms were introduced/
considered in context of stoichiometry, i.e., the concept straight 
from the 18th century[3]. The factual place of these terms is indi-
cated here by the mathematical formulation of redox systems, 
realized according to GATES/GEB principles, i.e., based on the 
Generalized Approach to Electrolytic Systems (GATES)[9], with 
Generalized Electron Balance (GEB) formulated according to 
Approach II to GEB[1-5,9-15]. 
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 Within GATES/GEB, the species in electrolytic sys-
tems are considered in their natural form, particularly as hydrates 
Xi

zi.niw  in aqueous solutions[10], where zi (zi = 0, ± 1, ± 2,…) is 
the charge of Xi

zi, expressed in elementary charge unit e = F/NA 
(F – Faraday constant, NA – Avogadro’s constant), and niW ( ≥ 
0) is the mean number of water (W = H2O) molecules attached 
to Xi

zi. The known chemical formulas of the Xi
zi of the and their 

respective external charges provide the information necessary/
sufficient to formulate the respective balances[4].
 The terms: components and species are distinguished. 
In the notation applied here, N0j (j = 1,2,…,J) is the number of 
molecules of components of j-th kind composing the static or dy-
namic D + T system, whereby the D and T are composed sepa-
rately, from defined components, including water. The mono- or 

mailto:michalot@o2.pl
http://www.ommegaonline.org
https://doi.org/10.15436/2476-1869.17.1569


two-phase electrolytic system thus obtained involve N1 mole-
cules of H2O and Ni species of i-th kind, Xi

ziniw  (i = 2, 3,…,I), 
denoted briefly as Xi

zi (Ni, ni), where ni ≡ niw ≡ niH2O; then we 
have: H+1 (N2,n2), OH-1 (N3,n3),… .
 The GEB is formulated according to two equivalent ap-
proaches, named as the Approach I to GEB and the Approach II 
to GEB. The Approach I to GEB is formulated according to ‘card 
game’ principle[10]; it is based on a common pool of electrons 
introduced into the system by electron-active elements[10-15]. 
The Approach II to GEB is formulated from linear combination 
2∙f(O) – f(H) of elemental balances: f(H) for H, and f(O). Both 
Approaches (I and II) to GEB are equivalent.
 Approach II to GEB <=> Approach I to GEB     (1) ؞                  
   
 All the inferences made within GATES/GEB are based 
on firm, algebraic foundations. The approach proposed allows 
understanding far better all physicochemical phenomena occur-
ring in the system in question and improving some methods of 
analysis. All the facts testify very well about the potency of sim-
ulated calculations made, according to GATES, on the basis of 
all attainable physicochemical knowledge. 
 The Approach I to GEB needs prior knowledge of ox-
idation numbers. The Approach II to GEB does not require any 
prior knowledge of the oxidation numbers of elements in the 
components and in the species. Because the ‘oxidation number’ 
is essentially the contractual concept, it is a fact of capital im-
portance, particularly in relation to organic species (molecules, 
ions, radicals and ion-radicals) of any degree of complexity. 
However, when the oxidation numbers are easily determined, 
the Approach I to GEB, known as the ‘short’ version of GEB, 
can be applied. The roles of oxidants and reductants are not as-
signed a priori to individual components within the Approaches 
I and II to GEB; GATES/GEB provides full ‘democracy’ in this 
regard.
 The principle of GEB formulation, discovered by Mi-
chałowski (1992) as the Approach I to GEB, and 2006 as the Ap-
proach II to GEB) was unknown in earlier literature. The GEB 
is considered as a new law of the matter conservation related to 
electrolytic redox systems, as a Law of Nature[9,10].
 The importance of GATES/GEB in area of electrolytic 
redox systems is unquestionable. Then the main purpose of the 
present paper is to familiarize it to a wider community. It will 
also be indicated, in a simple mathematical manner, the funda-
mental criterion distinguishing between non-redox and redox 
systems. Contrary to appearances, this criterion is not immedi-
ately associated with free electrons in electrolytic system.
 In this paper we consider first a relatively simple dy-
namic redox system, where V mL of C mol/L NaOH as titrant 
T is added; up to a given point of the titration, into V0 mL of C0 
mol/L Br2 as titrant D and the D + T mixture with volume V0 + 
V is thus obtained.
 V0 mL of D is composed of Br2 (N01 molecules) + H2O 
(N02 molecules), and V mL of T is composed of NaOH (N03 mol-
ecules) + H2O (N04 molecules). In V0 + V mL of D +T mixture 
we have the following species: 
H2O (N1), H

+1 (N2,n2), OH-1 (N3,n3), HBrO3 (N4,n4), BrO3
-1 (N5,n5), 

HBrO (N6,n6), BrO-1 (N7,n7), Br2 (N8,n8), Br3-1 (N9,n9), Br-1 (N10,n10), 
Na+1 (N11,n11).                                                                                                   (2)

In the D + T mixture, the molar concentrations of the species are 
as follows:
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 [Xi
zi] . (V0 + V) = 103∙Ni/NA (i = 2,…,11)                               (3)                               

And molar concentrations of the solutes are equal to
C0∙V0 = 103∙N01/NA                                                       (4)
C∙V = 103∙N03/NA                                                                      (5)
At V = 0, from Eq. (3) we have
[Xi

zi] ∙V0 = 103∙Ni/NA  (i = 2,…,11)                                          (6)

The system considered above will be denoted as T => D or, more 
exactly, as
 System-1: NaOH (C, V) => Br2 (C0, V0)
At V = 0, the D + T is limited to D, i.e., C0 mol/L Br2 solution. 
Analogously, we apply the notation
 System-2: NaOH (C, V) => HBrO (C0, V0)
for the second system, considered in further parts of this paper. 
At V = 0, the System 2 is limited to C0 mol/L HBrO solution. 
The C0 mol/L Br2 and C0 mol/L HBrO are considered as static 
systems, obtained after disposable mixing of the related com-
ponents.

Formulation of balances for the System-1
Charge balance
Denoting atomic numbers: ZH for H, ZO for O, ZBr for Br, ZNa for 
Na we have the balances:
• For nuclear protons
(2ZH+ZO)N1 + (ZH+n2(2ZH + ZO))N2 + (ZH+ZO + n3(2ZH+ZO))
N3 + (ZH+ZBr + 3ZO+n4(2ZH+ZO))N4 + (ZBr+3ZO+n5(2ZH+ZO))
N5 + (ZH+ZBr+ZO+n6(2ZH+ZO))N6 + (ZBr+ZO+n7(2ZH+ZO))
N7 + (2ZBr+n8(2ZH+ZO))N8 + (3ZBr+n9(2ZH+ZO)) N9  + 
(ZBr+n10(2ZH+ZO))N10 + (ZNa+n11(2ZH+ZO))N11 =2ZBrN01 + 
(2ZH+ZO)N02+ (ZNa+ZO+ZH)N03+ (2ZH+ZO)N04                                   (7)

• For orbital electrons
(2ZH+ZO)N1 + (ZH–1+n2(2ZH+ZO))N2 + (ZH+1+ZO+n3(2ZH+ZO))
N3 +(ZH+ZBr+3ZO+n4(2ZH+ZO))N4 + (ZBr+3ZO+1+n5(2ZH+ZO))
N5 + (ZH+ZBr+ZO+n6(2ZH+ZO))N6 + (ZBr+ZO+1+n7(2ZH+ZO))
N7 + (2ZBr+n8(2ZH+ZO))N8 + (3ZBr+1+n9(2ZH+ZO))N9 + 
(ZBr+1+n10(2ZH+ZO))N10 + (ZNa–1+n11(2ZH+ZO))N11 = 2ZBrN01 + 
(2ZH+ZO)N02                        (8)

Subtraction of Equation-(8) from Equation-(7) gives the charge 
balance (ChB)
f0 = ChB : 
N2 – N3 – N5 – N7 – N9 – N10 + N11 = 0 ↔   (+1)N2 + (–1)N3 + 
(–1)N5 + (–1)N7 + (–1)N9 + (–1)N10 + (+1)N11 = 0                  (9)

 The charge balance (f0 = ChB) is then derivable from 
balances for electrons and protons. It is nothing strange be-
cause the external charge of a species is a simple sum of charges 
brought by nuclear protons and orbital electrons. 

In particular, from Equations (3) and (9) we have
[H+1] – [OH-1] – [BrO3

-1] – [BrO-1] – [Br3
-1] – [Br-1] + [Na+1] = 0 

→                                          (9a)
(+1)∙[H+1] + (–1)∙[OH-1] + (–1)∙[BrO3

-1] + (–1)∙[BrO-1] + 
(–1)∙[Br3

-1] + (–1)∙[Br-1] + (+1)∙[Na+1] = 0                             (9b)

Generally, ChB is expressed by equation                                       
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Note that zi ≠ 0 are multipliers for concentrations of the corre-
sponding ions in the ChB.

Elemental balances
f1 = f(H) :                                                                                                               
2N1 + N2(1+2n2) + N3(1+2n3) + N4(1+2n4) + 2N5n5 + N6(1+2n6) 
+ 2N7n7 + 2N8n8 + 2N9n9 + 2N10n10 = 2N02                        (11)
                               
f2 = f(O) :  
N1 + N2n2 + N3(1+n3) + N4(3+n4) + N5(3+n5) + N6(1+n6) + 
N7(1+n7) + N8n8 + N9n9 + N10n10 = N02           (12)

f3 = f(Br) : 
N4 + N5 + N6 + N7 + 2N8 + 3N9 + N10 = 2N01                (13)

–f4 = –f(Na) :
N03 = N11                                         (14)

Linear combinations of the balances 
From Eqs. (11) and (12) we have
f12 = 2∙f2 – f1: – N2 + N3 + 5N4 + 6N5 + N6 + 2N7 = 0      (15)

From Eqs. (15) and (9) 
f12 + f0 – f4:  5N4 + 5N5 + N6 + N7 – N9 – N10 = 0          (16)

From Eqs. (13) and (16) 
ZBr∙f3 – (f12 + f0–f4): (ZBr-5)(N4+N5) + (ZBr–1)(N6+N7) + 2ZBrN8 + 
(3ZBr+1)N9 + (ZBr+1)N10 = 2ZBrN01                (17)

Formulation of balances for the System 2
 In the System 2 we have the set (2) of the species iden-
tical as in the System 1. Applying similar notation, we assume 
that V0 mL of D is composed of HBrO (N01 molecules) + H2O 
(N02 molecules) and V mL of T is composed of NaOH (N03 mol-
ecules) + H2O (N04 molecules). The numbers N01 and N02 of the 
molecules composing these systems and the numbers Ni of the 
species in the System 2 are different than that in the System 1, 
in principle. The f0 = ChB in the System 2 is identical with Eq. 
(9a), and –f4 = –f(Na) is identical with Eq. (14). Then after for-
mulation of f1 and f2 we have here, by turns,

f12 = 2∙f2 – f1 :– N2 + N3 + 5N4 + 6N5 + N6 + 2N7 = N01 + N03   (18)
 
f3 = f (Br) : N4 + N5 + N6 + N7 + 2N8 + 3N9 + N10 = N01        (19)

f12 + f0– f4 :  5N4 + 5N5 + N6 + N7 – N9 – N10 = N01                (20)

ZBr∙f3 – (f12 + f0–f4):     (ZBr–5)(N4+N5) + (ZBr–1)(N6+N7) + 2ZBrN8 
+ (3ZBr+1)N9 + (ZBr+1)N10 = (ZBr–1)N01                        (21)

The balances in terms of molar concentrations
For the System 1, from Eqs. (3) – (5), (13), (14) and (16), we 
have:
([HBrO3] + [BrO3

-1]) + ([HBrO] + [BrO-1]) + 2[Br2] + 3[Br3
-1] + 

[Br-1] = 2∙C0V0 / (V0 + V)                                                   (13a) 
 
[Na+1] = CV/(V0 + V)            (14a)
5([HBrO3] + [BrO3

-1]) + ([HBrO] + [BrO-1]) – [Br3
-1] – [Br-1] = 

0                                        (16a)

 Eqs. (13a) and (14a) are termed as concentration bal-
ances, obtained from elemental balances (13) and (14), and Eq. 
(16a) is the shortest form of GEB. The relation (14a) can be im-
mediately introduced into Eq. (9a); then we get
[H+1] – [OH-1] – [BrO3

-1] – [BrO-1] – [Br3
-1] – [Br-1] + CV/ (V0+V) 

= 0                                          (9c)

Eqs. (9c), (13a) and (16a) form the complete set of balances re-
lated to the System 1.
For the System 2,from Eqs. (3) – (5), (19) and (20), we obtain 
the balances:
([HBrO3] + [BrO3

-1]) + ([HBrO] + [BrO-1]) + 2[Br2] + 3[Br3
-1] + 

[Br-1] = C0V0/ (V0 + V)                               (19a)
5([HBrO3] + [BrO3

-1]) + ([HBrO] + [BrO-1]) – [Br3
-1] – [Br-1] = 

C0V0/ (V0 + V)                        (20a) 

completed by the balance (9c). 
 We can also refer to static systems, formed by (a) C0 
mol/L Br2 and (b) C0 mol/L HBrO. These solutions are identical 
with the titrand D in the related Systems 1 and 2. The balances 
for these static systems are obtained assuming V = 0 in Eqs. (9c), 
(13a) and (14a), or in Eqs. (9c),(19a) and (20a), resp. 
Note that Br2 and HBrO do not oxidize water molecules, i.e., 
products of H2O oxidation do not exist there as species. 

Relations between concentrations of the species
 From the interrelations obtained on the basis of expres-
sions for equilibrium data[16] collected in Table 1 we have:

[H+1] = 10-pH; [OH-1] = 10pH-14; [BrO3
-1] = 106A(E-1.45)-pBr+6pH; [BrO-1] 

= 102A(E-0.76)-pBr+2pH-28; [Br2] = 102A(E-1.087)-2pBr; [Br3
-1] = 102A(E-1.05)-2pBr; 

[HBrO3] = 100.7-pH∙[BrO3
-1]; [HBrO] = 108.6-pH∙[BrO-1]  

 Where the uniformly defined scalar variables: E, pH 
and pBr, forming a vector x = (E, pH, pBr)T, are involved:
A∙E = –log[e-1], pH = –log[H+1], pBr = –log[Br-1]

 All the variables are in the exponents of the power for 
10 in: [e-1] = 10-A∙E, [H+1] = 10-pH, [Br-1] = 10-pBr, where 1/A = RT/
F∙ln10; A = 16.9 at T = 298 K. The number of the (independent) 
variables equals to the number of equations, 3 = 3; this ensures 
a unique solution of the equations related to the Systems 1 and 
2, at the preset C0, C and V0 values, and the V-value at which 
the calculations are realized, at defined step of the calculation 
procedure, according to iterative computer program presented in 
Appendix. 

Graphical presentation
 Formulation of the static system with Br2 (C0) was pre-
sented first in[17], whereas the dynamic Systems: 1 and 2 were 
presented in[18]. The pH = pH (Φ) and E = E (Φ) relationships 
for the Systems 1 and 2 are plotted in Figures 1A, B, where the 
fraction titrated
         
          C . V
Φ =   --------                                                                           (22)
          C0

.
 V0   

 introduces a kind of normalization(independence on 
V0 value) for the related titration curves. The computer program 
related to the System 1 is presented in Appendix. Speciation di-
agrams for the Systems 1 and 2  are presented in Figures 1C, D.
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 The Br2 solution is acidic, as results e.g. from the ChB 
(Eq. 9c) at V = 0: at [Na+1] = 0 (Φ = 0) we have: [H+1] – [OH-1] 
= [BrO3

-1] + [BrO-1] + [Br3
-1] + [Br-1] > 0, i.e. [H+1] > [OH-1]. The 

Br2 is an acid with a strength comparable to that of acetic acid; 
at C0 = 0.01, pH equals: 3.40 for Br2, and 3.325 for CH3COOH 
(pK1 = 4.65). Disproportionation of Br2 occurs initially to a small 
extent (several %), according to the scheme Br2 + OH-1 = HBrO 
+ Br-1.
 In the System 2, disproportionation of HBrO affected 
by NaOH (C) added according to titrimetric mode is presented 
in Fig. 1D [18]. The [Br-1]/ [BrO3

-1] ratio equals: 10-2.2553/10-2.5563 at 
Φ = 2.0; 10-2.2730/10-2.5740 at Φ = 2.5, i.e. 100.3010 = 2 = 2:1, corre-
sponding to the stoichiometric ratio of products of this reaction. 
As results from Fig. 1D, the disproportionation of HBrO, at an 

excess of NaOH added, occurs mainly according to the scheme 
3HBrO + 3OH-1 = 2Br-1 + BrO3

-1 + 3H2O (stoichiometry 3:3 = 
1:1), resulting from half-reactions: HBrO + 2e-1 + H+1 = Br-1 + 
H2O, HBrO – 4e-1 + 2H2O = BrO3

-1 + 5H+1, and 3H+1 + 3OH-1 = 
3H2O. The (Φ,pH,E) values from the close vicinity of the corre-
sponding equivalence (eq) points on the curves in Figs. 1A,B are 
collected in Table 2. 
 In C0 = 0.01 mol/L HBrO, more than 90% HBrO dis-
proportionates according to the reaction 5HBrO = BrO3

-1 + 2Br2 
+ 2H2O + H+1; at V = 0 we have: [Br2] = 10-2.4406, [BrO3

-1] = 
10-2.7442, i.e. [Br2]/ [BrO3

-1] = 100.3036 ≈ 2, which confirms this stoi-
chiometry of the reaction. The H+1 ions formed in this reaction 
acidify the solution significantly: at C0 = 0.01 and V = 0 we have 
pH = 2.74, although HBrO itself is a relatively weak acid. 

Figure-1. The relationships: (A) pH = pH(Φ) and (B) E = E(Φ) for the Systems 1 and 2, and the related speciation diagrams for the Systems: 1 (C) 
and 2 (D), at V0 = 100, C0 = 0.01, C = 0.1.

 The main task of titration is the estimation of the equiv-
alent volume, Veq, corresponding to the volume V = Veq of T, 
where the fraction titrated (Eq. (22)) assumes the value 
  C . Veq
Φeq=     ----------                                                                      (23)
              C0

.
 V0    

 in contradistinction to visual titrations, where the end 
volume Ve Veq is registered, all instrumental titrations aim, in 
principle, to obtain the Veq value on the basis of experimental 
data {(Vj, yj) | j = 1,…,N}, where y = pH, E for potentiometric 
methods of analysis. Referring to Eq. (22), we have
C0

.V0 = 103 . mA/MA             (24)

where mA [g] and MA [g/mol] denote mass and molar mass of 
analyte (A), respectively. From Eqs. (22) and (24), we get 
mA = 10–3 . C . MA

. V/Φ             (25)
The value of the fraction V/Φ in Eq. (25), obtained from Eq. 
(22), 
V/Φ = C0

. V0/C              (26)
 is constant during the titration. Particularly, at the end 
(e) and equivalent (eq) points we have
V/Φ = Ve/Φe = Veq/Φeq             (27)

 The Ve [mL] value is the volume of T consumed up to 
the end (e) point, where the titration is terminated (ended). The 
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Ve value is usually determined in visual titration, when a pre-as-
sumed color (or color change) of D+T mixture is obtained. In a 
visual acid-base titration, pHe value corresponds to the volume 
Ve [mL] of T added from the start for the titration and   
 C . Ve
Φe  =     ---------                            (28)
 C0

.
 V0   

is the Φ-value related to the end point. From Eqs. (25) and (27), 
one obtains:
(a)  mA = 10-3∙C∙Ve∙MA/Φe  and (b) mA = 10-3∙C∙Veq∙MA/Φeq     (29)

 This does not mean that we may choose between Eqs. 
(29a) and (29b), to calculate mA. Namely, Eq. (29a) cannot be 
applied for the evaluation of mA: Ve is known, but Φe unknown. 
Calculation of Φe needs prior knowledge of C0 value; e.g., for 
the titration system NaOH(C,V) → HCl(C0,V0) we have [2]
         
Φe = C/C0  

. (C0 - αe) / (C + αe)                                                     (30)
where: α = [H+1] – [OH-1] = 10-pH – 10pH-14, and αe = α(pHe). How-
ever, C0 is unknown before the titration; otherwise, the titration 
would be purposeless. The pHe value in visual titration is known 
only approximately. Also Eq. (29b) is useless: the ‘round’ Φeq 
value is known exactly, but Veq is unknown; Ve (not Veq) is deter-
mined in visual titrations. 
Because Eqs: (29a) and (29b) appear to be useless, the third, 
approximate formula for mA, has to be applied[19], namely:
         
mA' = 10-3∙C∙Ve∙MA/Φeq = 10-3∙C∙Ve∙MA∙RA

eq                         (31)
where Φeq is put for Φe in Eq. 29a, and 
         
RA

eq = MA/Φeq                                        (32)
is named as the equivalent mass. The relative error in accuracy, 
resulting from this substitution, equals to
δ = (mA’ – mA)/mA = mA’/mA – 1 = Ve/Veq – 1 = Φe/Φeq – 1    (33)

 In particular, for the titration of V0 = 100 mL of C0 = 
0.01 mol/L A = Br2 (MBr2 = 159.808 g/mol) with V mL of C = 
0.1 mol/L NaOH we have Φeq = 2 (see Table 2). At pH = pHe = 
9.413 we have Φe = 2.003, and then δ = 2.003/2 – 1 = 0.15%.  
Note that this result was obtained on the basis of thermodynam-
ic knowledge (GATES/GEB), not from invalid, stoichiometric 
considerations.

Some remarks related to balances

Equations and equalities
 Among the concentration balances one can distinguish 
equations and equalities. An equality, represented by the relation 
(14a), involves only one species, whereas an equation involves 
more species, see e.g. Eq. (13a) or Eq. (16a). Concentrations 
of the species in the balances are involved in expression(s) for 
the corresponding equilibrium constant(s), exemplified by the 
relations presented in Table 1. In the equality (14a), the value 
for [Na+1] is a number for the pre-assumed C and V0 values, 
at given V-value; as such, it can enter immediately the related 
ChB, see Eq. (9c). Then (14a) is not considered as equation, 
when the number of equations is compared with the number of 
independent variables.  

Table 1. Equilibrium data related to different bromine species.
No Reaction Equilibrium equation Equilibrium 

data
1 BrO3

–1 + 6H+1 + 
6e–1 = Br–1 + 3H2O

[Br–1] = Ke1•[BrO3
–1]

[H+1]6[e–1]6 E04 = 1.45 V

2 BrO–1 + H2O + 2e–1 
= Br–1 + 2OH–1

[Br–1] = Ke2•[BrO–1]
[H+1]2[e–1]2/KW

2 E03 = 0.76 V

3 Br2 + 2e–1 = 2Br–1 [Br–1]2 = Ke3•[Br2][e
–1]2 E03 = 1.087 V

4 Br3
–1 + 2e–1 = 3Br–1 [[Br–1]3 = Ke4•[Br3

–1][e–1]2 E04 = 1.05 V
5 HBrO3 = H+1 + 

BrO3
–1

[H+1][BrO3
–1] = K51•[H-

BrO3] 
pK51= 0.7

6 HBrO = H+1 + 
BrO-1

[H+1][BrO-1] = K11•[H-
BrO] pK11 = 8.6

7 H2O = H+1 + OH-1 [H+1][OH–1] = KW pKW = 14.0
where: logKe1 = 6AE01, logKei = 2AE0i (i = 2,3,4); A = 16.9; pK51 = 
-logK51, pK11 = -logK11, pKW = -logKW

Table 2: The sets of (Φ, pH, E) values taken from the vicinity of the 
equivalence points for the Systems 1 and 2, at V0 = 100, C0 = 0.01, C 
= 0.1.

System 1 System 2
NaOH (C,V) → Br2 (C0,V0) NaOH (C,V) → HBrO (C0,V0)

Φ pH E Φ pH E
1,995 6,666 1,0491 0,995 6,347 1,0720
1,996 6,728 1,0455 0,996 6,411 1,0681
1,997 6,811 1,0406 0,997 6,498 1,0630
1,998 6,933 1,0334 0,998 6,625 1,0555
1,999 7,161 1,0199 0,999 6,866 1,0412
2,000 8,143 0,9619 1,000 8,102 0,9682
2,001 8,966 0,9132 1,001 9,002 0,9150
2,002 9,244 0,8968 1,002 9,281 0,8985
2,003 9,413 0,8868 1,003 9,450 0,8885
2,004 9,534 0,8797 1,004 9,571 0,8814
2,005 9,628 0,8741 1,005 9,666 0,8758

Number of independent equations and dependency/indepen-
dency property
 In the System 1, three equations: (9c), (13a) and (16a) 
form a set of independent[20,21] equations. In this context, four 
equations: (9c), (13a), (16a) and (17a)
(ZBr–5)∙([HBrO3] + [BrO3

-1]) + (ZBr–1)∙([HBrO] + [BrO-1]) + 
2ZBr∙[Br2] + (3ZBr+1)∙[Br3

-1] + (ZBr+1)∙[Br-1] = 2ZBr∙C0       (17a)

 form a set of linearly dependent equations in the Sys-
tem 1; in other words, the set of equations: {(9c), (13a), (16a)} 
or {(9c), (13a), (17a)} can be chosen, optionally, as the equa-
tions involved in the algorithm applied for calculation purposes, 
see Appendix, where Eq. (17a) is involved. In the Systems 1 and 
2, three independent variables: xT = (x(1), x(2), x(3)) = (E, pH, 
pBr) are involved. Informally, for the System 1, E is ascribed to 
GEB (Eqs. (16a),(17a)), pH to ChB (Eq. (9c)), and pBr – to the 
concentration balance for Br (Eq. (13a)). The volume V of the 
titrant (T) added is considered as a parameter, not variable; the V 
value is changed, in steps, in the calculation procedure, realized 
according to iterative computer program, here: MATLAB.
 The linear dependence of algebraic equations is usu-
ally checked using the Gaussian elimination method[22] or the 
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Kronecker-Capelli theorem[23]; there are time-consuming proce-
dures, however. Afar most efficient method of the linear com-
bination is presented[20], where the set of dependent equations 
related to non-redox systems is reduced to the identity 0 = 0, 
whereas the simplest form of the linear combination is obtained 
for redox systems[20,24]; high efficiency of this method can easily 
be checked in far more complex electrolytic non-redox or redox 
systems, also in mixed-solvent media[25-27].
 
Oxidation number, oxidant and reductant as the redundant 
terms
 In formulation of GEB according to the Approach II to 
GEB, the prior knowledge of oxidation numbers is not needed; 
it is the paramount advantage of the Approach II to GEB, par-
ticularly when applied to complex organic species, with radicals 
and ion-radicals involved. It should be noticed that the oxidation 
number, representing the degree of oxidation of an element in 
a compound or a species, is a contractual concept. None pri-
or knowledge, except composition and external charge of the 
species formed in the system is needed. The equivalency of the 
Approaches I and II to GEB means that the equation obtained by 
a suitable linear combination of pr-GEB with charge balance and 
other elemental/core balances becomes identical with the one 
obtained directly from the Approach I to GEB.
The GEB related to the System 1 with Br2 (C0) and expressed 
by Eq. (16a), obtained according to Approach II to GEB, can be 
rewritten as follows: 
1∙(+5)∙([HBrO3] + [BrO3

-1]) + 1∙(+1)∙([HBrO] + [BrO-1]) + 
2∙0∙[Br2] + 3∙(–1/3)∙[Br3

-1] + 1∙(–1)∙[Br-1] 
= 2∙(0)∙C0V0/ (V0 + V)             (16b)
 whereas the GEB related to the System 2 with HBrO 
(C0) and expressed by Eq. (20a), obtained according to Approach 
II to GEB, can be rewritten as follows: 
1∙(+5)∙([HBrO3] + [BrO3

-1]) + 1∙(+1)∙([HBrO] + [BrO-1]) + 
2∙0∙[Br2] + 3∙(–1/3)∙[Br3

-1] + 1∙(–1)∙[Br-1] 
= 1∙(1)∙C0V0/(V0 + V)            (20b)
 Analogous balances are obtained for static systems, 
with C0 mol/L (a) Br2, (b) HBrO. As we see, the coefficients at 
the concentrations of the corresponding species and at the con-
centrations of the related components are equal to the oxidation 
numbers of Br as an electron-active component in the related 
Systems (1 and 2).
It is a general property, valid also in the systems where two or 
more electron-active elements are involved. 
 We refer here to titration of V0 mL of the titrand D con-
taining FeSO4 (C0) + H2SO4 (C01) with V mL of titrant T, con-
taining KMnO4(C), added up to a given point of the titration. In 
this case, the linear combination of electron-non-active elements 
(‘fans’), expressed as follows[28]

2∙f(O) – f(H) + ChB – f(K) – 6∙f(SO4)  = – (f(H) – 2∙f(O) + f(K) + 
6∙f(SO4) – ChB) ↔  
(+1)∙f(H) + (–2)∙f(O) +(+1)∙f(K) + (+6)∙f(SO4) – ChB →     (34)

(+2)∙([Fe+2] + [FeOH+!] + [FeSO4]) + (+3)∙([Fe+3] + [FeOH+2] + 
[Fe(OH)2

+1] + 2[Fe2(OH)2
+4] + [FeSO4

+1] + [Fe(SO4)2
-1]) + (+2) ∙ 

([Mn+2] + [MnOH+1] + [MnSO4]) + (+3)∙([Mn+3] + [MnOH+2]) + 
γ∙(+4)∙[MnO2] + (+6) ∙ [MnO4

-2] + (+7) ∙ [MnO4
-1] = 

(+2) ∙ C0V0/ (V0 + V) + (+7) ∙ CV/ (V0 + V)         (34a)

where γ = 1 if precipitation of MnO2 in this system is admitted 

(e.g. at too small C01 value), or γ = 0 if it does not occur. The sim-
plest form of GEB is obtained there from linear combination of 
the above balance (34) with the balances for the electron-active 
elements (‘players’). At γ = 0 we have[29-32]

(+1)∙f(K) + (+6)∙f(SO4) + (+3)∙f(Fe) + (+2)∙f(Mn) + (–2)∙f(O) + 
(+1)∙f(H) – ChB                           (35)

[Fe+2] + [FeOH+1] + [FeSO4] – (5[MnO4
-1] + 4[MnO4

-2] + [Mn+3] 
+ [MnOH+2]) = (C0V0 – 5CV)/(V0+V)                      (35a)

This property is also related to non-redox systems.
 We refer here to V0 mL of CuSO4 solution prepared 
from N01 molecules of CuSO4•5H2O and N02 molecules of H2O. 
The resulting solution consists of the following species: H2O 
(N1), H

+1 (N2, n2), OH-1 (N3, n3), HSO4
-1 (N4, n4), SO4

-2 (N5, n5), 
Cu+2 (N6, n6), CuOH+1 (N7, n7), Cu(OH)2 (N8, n8), Cu(OH)3

-1 (N9, 
n9), Cu(OH)4

-2 (N10, n10), CuSO4 (N11, n11). The components and 
species are involved in the balances for particular elements:  H, 
O, Cu, S, i.e., 
f1 = f(H) : 2N1 + N2(1+2n2) + N3(1+2n3) + N4(1+2n4) + N52n5 
+ N62n6 + N7(1+2n7) + N8(2+2n8) + N9(3+2n9) + N10(4+2n10) + 
N112n11 = 10N01 + 2N02                   (36)

f2 =  f(O) : N1 + N2n2 + N3(1+n3) + N4(4+n4) + N5(4+n5) + N6n6 + 
N7(1+n7) + N8(2+n8)+ N9(3+n9) + N10(4+n10) + N11(4+n11) = 9N01 
+ N02                (37)

f12 = 2∙f(O) – f(H) : –N2 + N3 + 7N4 + 8N5 + N7 + 2N8 + 3N9 + 
4N10 + 8N11 = 8N01                           (38)

f0 = ChB : N2 – N3 – N4 – 2N5 + 2N6 + N7 – N9 – 2N10 = 0    (39)

–2f3 = – 2f(Cu) : 2N01 = 2N6 + 2N7 + 2N8 + 2N9 + 2N10 + 2N11  
               (40)

–6f4 = – 6f(S) = – 6f(SO4):  6N01 = 6N4 + 6N5 + 6N11          (41)

Simple addition of the elemental/core balances 38 – 41 gives 
the identity 
2∙f(O) – f(H) + ChB – 2f(Cu) – 6f(S) = 0  => (+1)∙f(H) + 
(–2)∙f(O) + (+2)∙f(Cu) + (+6)∙f(S) – ChB = 0 => 0 = 0          (42)
 As we see, at the identity condition fulfilled, the multi-
pliers in the transformed identity are equal to oxidation numbers 
of the indicated elements. 

As results from the examples presented above, 
(1) Formulation of GEB according to Approach II to GEB needs 
none prior knowledge of the oxidation states (oxidation num-
bers) of all elements participating the System 1 or 2, i.e., Br, H, 
O; it means that the oxidation state (oxidation number) is the 
derivative concept within GATES/GEB;
(2) The terms: oxidant and reductant are not distinguished, i.e., 
not ascribed a priori to particular components and species in 
electrolytic systems, considered according to GATES/GEB prin-
ciples, with GEB obtained according to Approaches I and II to 
GEB; full ‘democracy’ in this respect is assumed;
(3) In the balance obtained from f12 + f0, the oxidation numbers 
in particular Br-species are equal to (or involved with) the co-
efficient/multiplier at the concentration of the corresponding 
species with electron-active element (here: Br), and in the com-
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ponent (Br2 or HBrO) or bromine species. If the species or com-
ponent involves more atoms of an electron-active element, then 
the coefficient is equal to the product of the related numbers; e.g. 
–[Br3

-1] = 3∙(–1/3)∙[Br3
-1] in Eq. 16a or 20a, where 3 – number of 

Br-atoms, –1/3 – oxidation number of Br in Br3
-1. 

Concluding remarks

The unique property of 2∙f(O) – f(H)
 In all instances it can be stated that – for all redox sys-
tems – any linear combination of f12 = 2∙f(O) – f(H) with f0 = ChB 
and other elemental/core[20] balances related to a redox system of 
any degree of complexity does not give the identity, see e.g. Eqs. 
(16a) or (20a) are different from identity 0 = 0, of course.
 The redox systems are ‘coded’ in the respective bal-
ances: f(H) and f(O). The balance 2∙f(O) – f(H) is linearly inde-
pendent on charge and concentration balances related to redox 
systems, and it is dependent on those balances when related to 
non-redox systems. The independency or dependency prop-
erty is then the general criterion distinguishing between redox 
and non-redox systems[11-20], of any degree of complexity, also 
in mixed-solvent media[25-27]. This unique, general property ex-
plains clearly why the elemental balances: f(H) and f(O) are not 
formulated in any non-redox system. This regularity applies to 
non-redox systems of any degree of complexity, both for sys-
tems with aqueous solutions, as well as with amphiprotic sol-
vents or a mixture of solvents, including at least one amphiprotic 
co-solvent[21]. The 2∙f(O) – f(H) and any linear combination of 
2∙f(O) – f(H) with charge balance and other (elementary, core) 
balances of a given system retain full properties of the GEB.
 Contrary to appearances, established by the current 
paradigm, this criterion distinguishing non-redox and redox sys-
tems and unknown in earlier literature, is not immediately/ex-
plicitly associated with free electrons in the system. It provides a 
kind of uniformity in the formulas derived for this purpose. This 
fact, especially the simple calculations of free electron concen-
trations in redox systems[5], deny the unique role of free electrons 
in redox reactions, expressed in elementary redox reactions, as 
described in half- or partial reactions, where the species of the 
same element with different oxidation numbers are involved.On 
the other hand, it points to the unique role of H and O in redox 
systems[33-41], suggested in earlier theoretical/hypothetical con-
siderations on these systems. This issue will be developed in a 
separate work.
 Before 1992, the basic property of the balance 2∙f(O) – 
f(H) for redox systems was unknown at all in scientific world, 
and the linear independency/dependency of 2∙f(O) – f(H) as the 
fundamental/practical criterion distinguishing redox/non-re-
dox systems of any degree of complexity was also unknown. 
Here is the hidden simplicity, which had to be discovered, as 
the Approach II to GEB. One of the authors™ contends that the 
discovery of the Approach II GEB would most likely be impos-
sible without the prior discovery of the Approach I to GEB. The 
Generalized Electron Balance (GEB) concept, valid for redox 
electrolytic systems, is the emanation of balances for H and 
O, referred to aqueous media. GEB is compatible with other 
(charge and concentration) balances and enables to resolve the 
electrolytic (mono- or/and two-phase) redox systems of any de-
gree of complexity, within the scope of Generalized Approach 
To Electrolytic Systems (GATES), perceived as the thermody-

namic approach to equilibrium and metastable systems, where 
all necessary physicochemical knowledge on the systems tested 
is involved. The advantages of GATES are illustrated on exam-
ples of redox and non-redox analytical systems. The GATES is 
perceived as the unrivalled tool applicable, among others: (a) 
to mathematical modelling of thermodynamic behavior of the 
systems, (b) in choice of optimal a priori conditions of chemical 
analyses, and (c) in gaining chemical information invisible in 
real experiments, in general. Furthermore, GATES is the basis 
for Generalized Equivalence Mass (GEM) concept, considered 
as the advantageous alternative against the obligatory Equiva-
lence Mass (EM) concept suggested by IUPAC. According to 
GATES, any chemical reaction notation is only a basis to formu-
late the related expression for equilibrium constant according to 
mass action law.
 GATES/GEB allows tracking not only the individual 
titrations, but also the processes composed of several steps, as 
shown in the example of iodometric determination of copper[5]. 
The entire analytical process is partitioned here into 4 stages: 
two preparatory stages, with non-redox reactions, and two fur-
ther stages in which redox reactions occurred. The majority of 
the dynamic systems, realized according to titrimetric mode, 
are perceived also as an important tool in the classical chemical 
analysis.
 GATES/GEB is a counter-proposal in relation to earlier 
IUPAC decisions, presented in three subsequent editions of the 
Orange Book, and based on reaction stoichiometry; that view-
point was criticized unequivocally/exhaustively/convincingly, 
especially in a series of review articles[2-5]. It was demonstrated, 
on examples of redox systems of different complexity, that stoi-
chiometry is a secondary/derivative concept from the viewpoint 
of GATES, and GATES/GEB, in particular.
 Concluding, GATES is the overall, thermodynamic 
approach to redox and non-redox, static and dynamic, single 
and multiphase equilibrium, metastable and non-equilibrium 
electrolytic systems, of any degree of complexity. Possibilities 
of GATES/GEB are far greater than ones offered by the actual 
physicochemical knowledge related to the system in question.

Appendix
Computer program for the NaOH_Br2 system
function F = NaOH_Br2(x)
global V C0 V0 C yy
E = x(1);
pH = x(2);
pBr = x(3);

H = 10^(-pH);
Kw = 10^-14;
pKw = 14;
OH = Kw/H;
A = 16.92;
Br = 10^-pBr;   
ZBr = 35;

Br2 = Br^2*10^(2*A*(E-1.087));
Br3 = Br^3*10^(2*A*(E-1.05));
BrO = Br*10^(2*A*(E-0.76) + 2*pH-2*pKw);
BrO3 = Br*10^(6*A*(E-1.45) + 6*pH);
HBrO = 10^8.6*H*BrO;
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HBrO3 = 10^0.7*H*BrO3;
Na = C*V/(V0 + V);

F = [%Charge balance
        (H-OH+Na-Br-Br3-BrO-BrO3);
        %Concentration balance for Br
        (Br + 3*Br3 + 2*Br2 + HBrO + BrO + HBrO3 + BrO3 - 
2*C0*V0/ (V0 + V));
        %Electron balance
        ((ZBr+1)*Br + (3*ZBr+1)*Br3 + 2*ZBr*Br2 + (ZBr-1)*(H-
BrO+BrO)...
        + (ZBr-5)*(HBrO3+BrO3) - 2*ZBr*C0*V0/ (V0+V))];

yy(1) = log10(Br);
yy(2) = log10(Br3);
yy(3) = log10(Br2);
yy(4) = log10(HBrO);
yy(5) = log10(BrO);
yy(6) = log10(HBrO3);
yy(7) = log10(BrO3);
yy(8) = log10(Na);
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