
Journal of Pharmacy 
and Pharmaceutics ISSN: 2377-1313

OPEN ACCESS

Evaluation of Arterial-Venous Blood Alcohol 
Concentration Gradients of Ethanol Administered by 

an Infusion to Dogs
Maria Durisova*

Abstract
	 Numerous workers investigated ethanol pharmacokinetic. Therefore, the goal of the present study was not an inves-
tigation of ethanol pharmacokinetics; instead, the goal of the present study was to prepare further illustrative examples 
of a successful use of computational and modeling tools from system engineering in pharmacokinetic investigations. 
	 The previous study by Wilkinson and Rheingold published in October 1977 issue of the Journal of Pharmacokinet-
ics, described an investigation of arterial-venous blood concentration gradients of ethanol administration by a constant 
rate intravenous infusion through indwelling venous catheters to dogs. 
	 The present study is a free continuation of the study by Wilkinson and Rheingold; therefore, the data available in the 
study by Wilkinson and Rheingold were used.  
	 An advanced modeling method, implemented in the computer program named CTDB, and described in the study by 
Dedik et al[1] was used for modeling purposes.
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Introduction

	 Ethanol, has been used medicinally and recreationally and its pharmacokinetic proper-
ties have bare been studied widely for medical, legal and forensic purposes.  
	 Numerous studies published previously described investigations of the pharmacoki-
netic behavior of ethanol using traditional pharmacokinetic modeling method[2-8]. Therefore, the 
goal of the present study was not to investigate ethanol pharmacokinetics; instead, the goal of 
the present study was to prepare further illustrative examples of a successful use of modeling 
and computational tools from system engineering in pharmacokinetic investigations. The previ-
ous examples can be fin in the full-text articles that are available free of charge at the following 
web site of the author: http://www.uef.sav.sk/durisova.htm
In the preparation of illustrative examples, the data available in the study by Wilkinson Rhein-
gold and an advanced modeling method implemented In the software named CTDB were used[1]. 
	 An example of a successful use of the computer CTDB can be find in the study by 
Dedík et al. published in September 2007 Issue of the Journal Diabetes Research and Clinical 
Practice, which is available here:
http://www.uef.sav.sk/advanced_files/OGTT-2007.pdf
	 The mathematical models developed in the present study, successfully described ob-
served ethanol concentration-time profiles of ethanol of the dogs investigated in the study by 
Wilkinson and Rheingold[8] and in the present study.

Methods

The data of dogs taken from the study by Wilkinson and Rheingold were used.
The advanced mathematical modeling method described in the study by Dedík et al[1],  published 
in September 2007 Issue of the Journal Diabetes Research and Clinical Practice and implement-
ed in the computer program named CTDB was employed for modeling purposes[1]. The demo 
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version of the computer program CTDB can be finding on the 
following author’s web site: http://www.uef.sav.sk/advanced.
htm
	 The development of mathematical models of the cen-
tration-time profiles of ethanol after ethanol infusion to the   
dogs investigated in the study[2] and in the present study was  
performed as described later on:
	 On the first step of the model development process, an 
ADME related dynamic system was defined in Laplace domain 
for the dogs, using the transfer function, denoted by H(s) and 
described by Eq. (1): 
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	 In Eq.(1): S is the Laplace variable, I(s) is the Laplace 
domain counterpart of the mathematically transformed intra-
venous administration of ethanol to the dogs[2] and C(s) is the 
Laplace domain counterpart of the mathematically transformed 
blood ethanol concentration time profile measured following in-
travenous administration of ethanol to the dogs investigated in 
the study[2] and in the present study.
        On the second step of the model development process, a 
mathematical model of the dynamic system defined was devel-
oped, using the advanced modeling method implemented in the 
computer program named CTDB[1]. 
The general form of the model transfer function HM(S) used also 
in the present study, is described by the following equation:
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On the right-hand-side of Eq. (2) is the Padé approximant to the 
model transfer function HM(S) [9,10],  
G is an estimator of the model parameter conventionally called 
a gain of a dynamic system, a1,...an,b1...bm are additional model 
parameters, n is the highest degree of the numerator polynomi-
al, and m is the highest degree of the denominator polynomial, 
where n < m  see for example the studies[11-27] and references 
therein.    
On the third step of the model development process, the model 
transfer function was converted into the equivalent model fre-
quency response function (denoted by FM(Iwj)) in the frequency 
domain; see for example, the studies cited above.
After that, the previously published non-iterative method[28] was 
employed to determine the model frequency response function 
FM(Iwj) of the dogs, and to determine point estimates of the pa-
rameters of the model frequency response function FM(Iwj) in 
the frequency domain. The general form of a model the frequen-
cy function FM(Iwj) is described by Eq. (3). It was also used in 
the current study. 
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Besides the radial frequency w and the imaginary unit i, the 
meaning of the symbols used in Eq. (3) is the same as the mean-
ing of the symbols used in Eq. (2) 
  On the forth step of the model development process, the best 
model of the frequency response function FM(Iwj) was selected 
using the Akaike information criterion, modified for the use in 

the complex domain[29,30].  
On the fifth step of the model development process, a) the output 
C(s) of the model developed corresponding to the ethanol input 
I(s) was determined, using a numerical simulation method in the 
time domain;
After that the model output C(s) was refined, using the 
Gauss-Newton and Monte-Carlo method[31,32] in the time do-
main.
After that, the outcomes of the models developed and the con-
centration-time profiles of ethanol were mutually statistically 
compared, and in this way, a validation on the models was per-
formed[33-38].

Results

As seen in Figures 1 - 4, the mathematical models developed 
successfully described

Figure 1:  Blood ethanol concentration-time profile measured after in-
travenous infusion of ethanol to dogs[1] and the model developed.
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Figure 2:  Blood ethanol concentration-time profile measured after in-
travenous infusion of ethanol to dogs[1] and the model developed.
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Figure 3: Blood ethanol concentration-time profile measured after in-
travenous infusion of ethanol to dogs[1] and the model developed.
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Figure 4: Blood ethanol concentration-time profile measured after in-
travenous infusion of ethanol to dogs[1] and the model developed.
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