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Abstract

 Recent insights into the pathophysiology of chronic myelomonocytic leuke-
mia (CMML) have been obtained by the molecular and biologic characterization of 
primary leukemic cells from patients and from animal models. Almost 3 decades ago 
extensive myeloid colony growth in semisolid cultures without exogenous growth fac-
tors was observed as an in vitro characteristic of a subgroup of CMML patients. Recent 
data suggest that this phenomenon was probably the first indication of a hyperactive 
RAS signaling pathway in these patients. Although the mutation landscape in CMML 
is heterogenous and molecular aberrations in other signaling components can be found 
in some patients, the RAS pathway seems to play the major pathophysiological role in 
the majority of CMML patients with myeloproliferation (MP), disease progression and 
transformation into secondary acute myeloid leukemia (AML). There is also increasing 
evidence indicating that MP-CMML as a RAS pathway driven disease evolves from 
age related clonal hematopoiesis. 
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Introduction

 Chronic Myelomonocytic Leukemia (CMML) is a he-
matopoietic malignancy of the elderly that is characterized by 
leukocytosis with monocytes and granulocytic cells in all stages 
of development, marked dysmyelopoiesis, a variable course, un-
responsiveness to aggressive chemotherapy and an inherent risk 
of transformation to Acute Myeloid Leukemia (AML)[1,2]. With 
regard to the presence of myeloproliferation CMML was origi-
nally subdivided into myeloproliferative disorder (MPD)-CM-
ML (WBC count > 13 x 109/L) versus myelodysplastic syndrome 
(MDS)-CMML (WBC count < 13 x 109/L MDS-CMML) by the 
FAB criteria[3]. Since CMML is characterized by features of both 
a MDS and a MPN the World Health Organization (WHO) clas-
sification of 2008 assigned CMML to the mixed category MDS/
MPN[1]. CMML is further subclassified into CMML-1 ( < 5% 
circulating blasts and < 10% bone marrow blasts) and CMML-2 
(5 - 19% circulating blasts, 10 - 19% BM blasts), with approxi-
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mate median survival of 38 and 24 months, respectively[4-6].
 In a large series of 1832 patients captured in the inter-
national CMML database that merged CMML registries from 
8 tertiary cancer centers across 3 different countries between 
July 1981 and June 2014 the median age at diagnosis was 70 
(16-93 years), with a male predominance (67%)[7]. Most pa-
tients were evenly subcategorized as MPN-CMML (49.8%) 
versus MDS-CMML (50.2%). Splenomegaly was demonstrable 
in 25% of all cases[7]. The median overall survival of CMML 
patients is about 30 months, one third evolving to AML while 
the others die from the consequences of cytopenias or comor-
bidities. Allogeneic transplantation, which is the only curative 
therapy, is rarely feasible because of age and/or comorbidities. 
In patients ineligible for transplantation, intensive chemotherapy 
results in low response rates and short response duration[8]. Hy-
droxyurea is used to control myeloproliferation[9]. The cytidine 
analogues azacytidine (AZA) and decitabine (5-aza-2´-deoxy-
cytidine) have demonstrated some efficacy in delaying disease 
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course in advanced CMML and were approved for the treatment 
of CMML[10-14].

High spontaneous formation of myeloid colonies without ex-
ogenous growth factors is an in vitro characteristic of a sub-
group of patients with CMML
 We have originally shown that extensive formation 
of colony-forming units granulocyte/macrophage (CFU-GM) 
without the addition of exogenous growth factors is an in vitro 
characteristic of a subgroup of patients with CMML (Table 1)[15]. 
This observation has been reproduced by others[16,17] and seems 
to be an in vitro phenomenon which is typical for CMML since 
it can be regularly demonstrated in CMML but is not a com-
mon finding in other MPNs including CML. Moreover we have 
shown that spontaneous colony growth from CMML cells can be 
markedly reduced by addition of antigranulocyte/macrophage 
colony-stimulating factor (GM-CSF) antibodies, but not by ad-
dition of antibodies against G-CSF, IL-3, or IL-6 suggesting that 
GM-CSF signaling may play a major role in the pathophysiology 
of this disease (Figure 1)[18]. High spontaneous CFU-GM growth 
( > 100/105 MNC) could be found in 40% of CMML patients in 
a small retrospective study[19]. Moreover, CMML patients with 
high spontaneous CFU-GM growth ( > 100/105 MNC) have a 
much worse prognosis than patients with low colony growth in 
this study indicating a clinical significance of our observation 
(Figure 2)[19].

Table 1. In vitro cultures from patients with CMML using the CFU-C 
assay. Mononuclear cells from patients and normal individuals were 
cultivated in semisolid cultures with or without colony-stimulating ac-
tivity (CSA). Data show in both CMML patients massively increased 
myeloid colony (CFU-C) growth as compared to controls and also the 
formation of CFU-C without the addition of exogenous CSA (adapted 
from Geissler, K., et al, Leuk Res 1988[15]).

Source CFU-C/2.5 x 104 MNC

With CSA

P1 1 BM MNC 910
6 Controls BM MNC               19.8 + 8.5
Pt 2 PB MNC 23.0
6 Controls 0.36 + 0.15

Without CSA

P1 1 BM MNC 815
6 Controls BM MNC 0.0 + 0.0
Pt 2 PB MNC 27.0
6 Controls 0.0 + 0.0

CMML, chronic myelomonocytic leukemia; CSA, colony stimulating 
activity; BM, bone marrow; PB, peripheral blood; MNC mononuclear 
cells

CMML in preclinical models
 The “RASopathies” are a group of genetic syndromes 
caused by germline mutations in genes that encode components 
of the RAS signaling pathway including NRAS, KRAS, NF-1, 
CBL, and PTPN11[20-25]. Besides their developmental defects they 
share a predisposition to juvenile myelomonocytic leukemia, a 
hematologic malignancy of early childhood. In the preclinical 
mouse model myelomonocytic leukemias can be recapitulated 
by transplantation of mouse BM cells harboring an oncogenic 
mutation in the Nras locus[26]. Interestingly, alterations of the 
other RASopathy genes may also lead to a similar phenotype in 
preclinical mouse models[27-31]. Mice develop a myeloprolifera-
www.ommegaonline.org Int J Hematol Ther    |     volume 3: issue 1
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tive disorder with clonal expansion of the granulomonopoiesis 
in vivo and show spontaneous in vitro myeloid colony formation 
without exogenous growth factors due to aberrant GM-CSF sig-
naling.

Figure 1. Effect of anticytokine antibodies on spontaneous growth of 
CMML cells in 3 patients. PB MNC were cultured with medium alone 
or with antibodies against GM-CSF, G-CSF, IL-3, or IL-6, respectively. 
Data show a marked inhibition of spontaneous CFU-GM growth in the 
presence of anti-GM-CSF antibodies in all 3 patients indicating that au-
tonomous colony formation is a GM-CSF dependent in vitro phenome-
non (adapted from Geissler, K., et al, J Exp Med 1996[18]).

Figure 2. Kaplan-Meier estimates of survival for CMML patients with 
autonomous colony growth above (n = 12) and below (n = 18) 100 per 
105 PBMNC. CMML patients with high CFU-GM growth had a sig-
nificantly shorter survival than patients with low CFU-GM growth at 
presentation (median 6.5 vs. 44.5 months; p < 0.00002 by the log-rank 
test; adapted from Sagaster, V., et al, Ann Hematol 2004[19])

 In an animal model conditional complete Tet2 loss 
leads to a progressive enlargement of the hematopoietic stem 
cell compartment and eventual myeloproliferation in vivo, in-
cluding splenomegaly, monocytosis, and extramedullary hema-
topoiesis[32]. In addition, Tet (+/-) mice also displayed increased 
stem cell self-renewal and extramedullary hematopoiesis, sug-
gesting that Tet2 haploinsufficiency contributes to hematopoi-
etic transformation in vivo. Interestingly, another group could 
demonstrate that approximately 1/3 of Tet2(-/-) and 8% of 
Tet(+/-) mice died within 1 year of age because of the devel-
opment of myeloid malignancies resembling characteristics of 
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CMML suggesting that Tet2 loss may represent a predisposition 
for the development of this malignancy[33]. Furthermore it was 
shown by this authors that transplantation of Tet2(-/-), but not 
wild type or Tet2(+/-) BM cells, led to increased WBC counts, 
monocytosis and splenomegaly in wild type recipient mice[34].

Heterogenous mutational landscape in CMML
 Thirty percent of CMML patients display an abnor-
mal karyotype, with common abnormalities being +8 (23%), -Y 
(20%), -7/7q- (14%), 20q- (8%), +21 (8%) and der(3q) (8%)
[34]. Molecular abnormalities are seen in > 90% of patients with 
CMML[35] with a marked genetic heterogeneity among CMML 
patients. Initial studies that characterized the mutational land-
scape in CMML focused on genes with a known myeloid leu-
kemia or MDS association. Thus, a large number of gene mu-
tations in genes encoding epigenetic regulators (TET2, ASXL1, 
EZH2, UTX, IDH1, IDH2, DNMT3A)[36-47], splicing factors 
(SF3B1, SRSF2, ZRSR2, U2AF1)[48-51], and signaling molecules 
(NRAS, KRAS, CBL, JAK2, FLT3)[52-58] have been found. Muta-
tions in the transcription regulators RUNX1[58,59], NPM1[60], and 
TP53[61] have also been reported in CMML. Of all these muta-
tions TET2 (~60%), SRSF2 (~50%), ASXL1 (~40%) and RAS 
pathway (~30%) are most common but no molecular aberration 
is specific of this entity, as they can be encountered with differ-
ent frequencies in other myeloid neoplasms (Table 2)[62].

Table 2. Frequencies of recurrent genetic mutations in MDS/MPNs. 
Data show that of all mutations TET2, ZRSR2, ASXL1 and RAS path-
way are most common in CMML but no molecular aberration is specific 
of this entity, as they can be encountered with different frequencies in 
other myeloid neoplasms (adapted from Padron, E., Hematology Am 
Soc Hematol Educ Program 2015[62]).

CMML JMML aCML MDS/
MPN-U RARS-T

ASXL1 40 0 69 ? 15
CALR 0 0 0 0 < 0
CBL 10 15 0 ? 4
CSF3R 0 0 Variable 0 0
DNMT3A 2 0 ? ? 15
ETV6 < 1 0 ? ? 3
EZH2 5 0 ? 10 ?
IDH1/2 6 0 ? ? ?
JAK2 8 0 7 19 57
JAK3 NA 12 ? ? ?
K/N RAS 19 39 35 14 ?
NF1 < 1 13 ? ? ?
PTPN11 < 1 44 ? ? ?
RUNX1 15 0 ? 14 ?
SETBP1 9 8 48 10 1
SF3B1 6 0 ? ? 98
SRSF2 46 0 ? ? 7
TET2 58 0 ? ? 25
TP53 < 1 0 ? ? ?
U2AF1 5 0 ? ? 5
ZRSR2 8 0 ? ? 3

Age related mutations in CMML 
 Recent genetic analyses of large populations have re-
vealed that somatic mutations in hematopoietic cells leading to 
clonal expansion are commonly acquired during human aging[63]. 
Clonally restricted hematopiesis is associated with an increased 
risk of subsequent diagnosis of myeloid neoplasia. As some of 
the genes commonly mutated in age-related clonal hematopoesis 
such as TET2 and ASXL1 are also frequently mutated in CMML 
and aged hematopoiesis is characterized by a myelomonocyt-
ic differentiation bias it was recently hypothesized that CMML 
and aged hematopoiesis may be closely related[64]. By initially 
establishing the somatic mutation landscape of CMML by whole 
exome sequencing followed by gene-targeted validation it could 
be shown that most CMML patients (71%) had mutations in > 
2 ARCH (age-related clonal hematopoiesis) genes and 52% had 
> 7 mutations overall. Higher mutation burden was associated 
with shorter survival. Age-adjusted population incidence and 
ARCH mutation rates suggests that CMML represents the leu-
kemic conversion of the myelomonocytic-lineage-biased aged 
hematopoietic system.
 There are several lines of evidence now that mutations 
in TET2 are in fact initial a clonal driver in CMML[65]. These 
include the high frequency of these mutations which can be de-
tected in up to 60% of CMML patients[45,46,49], the fact that TET2 
mutated clones can be detected in a small fraction of older sub-
jects with clonal, but non-leukemic hematopoiesis[66-69], the com-
petitive advantage of murine and human HSC invalidated for 
TET2[32,70,71] and the results of single-cell clonal tracking exper-
iments indicating that a TET2 mutation, when present, is often 
the earliest recurrent genetic event in CMML[75]. 

High spontaneous myeloid colony growth in CMML reflects 
RAS pathway hyperactivation in patients with CMML
 Molecular alterations of RASopathy genes in murine 
hematopoietic cells cannot only lead to a CMML-like disease in 
vivo but interestingly can also induce spontaneous myeloid colo-
ny formation in vitro due to hypersensitivity of granulomonocyt-
ic precursors against GM-CSF. Moreover, in JMML, in which 
molecular aberrations are mainly restricted to the RASopathy 
genes including NRAS, KRAS, NF1, CBL and PTPN11[73,74] the 
spontaneous formation of CFU-GM due to GM-CSF-specific 
hypersensitivity is a hallmark feature of disease[75], which has 
been included in the diagnostic criteria. 
 In a small preliminary study we recently observed a 
high prevalence of RAS pathway mutations in CMML patients 
with high colony growth (Figure 3)[76]. We therefore speculated 
that spontaneous myeloid colony formation might be a surrogate 
parameter of RAS pathway hyperactivation in CMML. To test 
this hypothesis we performed next-generation sequencing from 
stored peripheral blood mononuclear cells (PB MNC) obtained 
from 100 CMML patients, in whom in vitro cultures have been 
performed during the last years. In vitro culture data were then 
correlated with molecular aberrations of RAS pathway compo-
nents[77]. In 40 CMML patients mutations in at least one of the 
RASopathy genes were detected, in 60 patients no mutations in 
RAS pathway components or such mutations with allele frequen-
cies < 20% were found. In the 40 patients with RAS pathway 
mutations we found molecular aberrations of the NRAS gene in 
19, KRAS in 6, NF1 in 3, CBL in 10 and PTPN11 in 2 patients, 
respectively. Mutations of RAS pathway components were mu-
tually exclusive, only low levels of more than one RAS opathy 
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mutation were found in some patients. In all patients with RAS 
pathway mutations additional mutations were observed in other 
genes, particularly in components of DNA methylation and/or 
the spliceosome as previously reported by others[36-51]. Results 
of semisolid cultures show that CMML patients in whom mo-
lecular aberration in RAS pathway components could be detect-
ed had a much higher spontaneous myeloid colony formation 
than CMML patients without RAS pathway mutations (Figure 
4). The median number of spontaneously formed CFU-GM per 
105 MNC was 147.5 (range 0 - 1009) in RAS positive patients as 
compared with 2 (0 - 812) in RAS negative patients (p < 0.00001 
by the Wilcoxon’s rank-sum test). Unstimulated myeloid colo-
ny formation in RAS positive CMML patients was also much 
higher than the spontaneous formation of CFU-GM in normal 
individuals (median 4.8/105 PBMNC, range 3.5 - 8.5) which has 
been reported by us previously[78]. On the other hand the inci-
dence of RAS pathway mutations was 72% (21/29) in CMML 
patients with high colony growth (>100/105 PBMNC) and 27% 
(19/71) in patients with low spontaneous CFU-GM formation 
(p < 0.0001 by the chi square test). In 8 patients high CFU-GM 
growth was observed without evidence of genetic aberrations 
in RAS signaling. This may indicate that additional molecular 
aberrations of the RAS pathway, that are not covered by our 
targeted NGS panel, may cause spontaneous cell proliferation, 
or alternatively, that other signaling pathways may also play 
a certain role in this in vitro phenomenon. There was no sig-
nificant difference regarding autonomous CFU-GM growth in 
CMML patients with molecular aberrations in genes of epigene-
tic regulation and RNA-splicing, respectively. High spontaneous 
CFU-GM was never observed in CMML patients with the JAK2 
V617F mutation as the only molecular aberration in signaling 
pathways (0/8 patients). Furthermore the in vitro conversion 
from a growth factor dependent to a growth factor independent 
phenotype by RAS but not by JAK2 could be demonstrated in 
BaF3 cells. Our findings suggest that high spontaneous myeloid 
colony growth in CMML is significantly associated with mo-
lecular aberrations of genes involved in RAS signaling and thus 
seems to reflect RAS pathway hyperactivation in patients with 
CMML. 

Figure 3. Mutation profiles in CMML according to spontaneous CFU-
GM growth. Each row corresponds to one patient. The first column 
indicates the patient number, the second the number of CFU-GM per 
105 Peripheral Blood Mononuclear Cells (PBMNC), the third the White 
Blood Cell (WBC) count and all other columns represent the status of 
the genes. Colored squares indicate mutated, white squares wild-type 
genes. The colors of mutant genes indicate the most affected functional 
categories. Red, green, and blue indicate RAS pathway, DNA meth-
ylation, and spliceosome, respectively. Mutations in the components 
of the RAS pathway were found in 12/15 (80%) CMML patients with 
high colony growth ( > 100 CFU-GM/105 PBMNC) and in 2/9 (22%) 
patients with low spontaneous colony formation ( < 100 CFU-GM/105 
PBMNC) (adapted from Geissler, K., et al, EHA Annual Meeting Ab-
stracts 2015 (abstr E1300)[76]).

Figure 4. Comparison of spontaneous in vitro CFU-GM growth from 
PBMNC in CMML patients with and without mutations in RASopathy 
genes including NRAS, KRAS, NF1, CBL and PTPN11. CFU-GM for-
mation in the absence of exogenous cytokines was assessed using semi-
solid cultures. Colony numbers are shown as box plots with first and 
third quartiles and interquartile ranges. Data were analyzed using the 
Wilcoxon’s rank-sum test. Spontaneous myeloid colony formation was 
significantly higher in CMML patients with mutations in RAS path-
way components than in patients without such mutations (p < 0.00001). 
(adapted from Geissler, K., et al, Leukemia 2016, in press[77])

Correlation between high CFU-GM growth and myelopro-
liferation
 In CMML some patients present with only modest 
leukocytosis while others have high WBC counts and organ in-
volvement, eg splenomegaly, serous effusions, and lymph node 
or skin infiltration[4]. Accordingly, an arbitrarily chosen leuko-
cyte count has been used to distinguish between a dysplastic 
type (MDS-CMML, WBC count < 13 x 109/L) and a prolifer-
ative type (MPD-CMML; WBC count >13 x 109/L). One im-
portant issue, therefore, is the question if genetic and/or biologic 
characteristics of leukemic cells can shape the phenotype of dis-
ease. In a small retrospective study with 30 CMML patients we 
were able to show that CMML patients with high spontaneous 
CFU-GM formation ( > 100/105 MNC) had higher WBC counts 
and a higher incidence of marked splenomegaly as compared 
with patients with low myeloid colony formation (Table 3)[19]. 
In another small study (n = 40) MP-CMML patients showed a 
higher frequency of RAS mutations by sequencing compared to 
MD-CMML[79].
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Table 3. Relation of autonomous colony growth to clinicobiological 
features. In vitro cultures containing more than 100 colonies per 105 
PBMNC were considered as high colony growth, whereas colony num-
bers below this cut-off level were called low growth. Median num-
bers (ranges) are given (adapted from Sagaster, V., et al, Ann Hematol 
2004[19]).

Feature Low growth
 (n = 18)

High growth 
(n = 12)

P 
value

Age (years) 73.5(60 - 85) 68.5(53 - 88) NS*
Sex (M/F) 14/9 7/5 NS˚
Splenomegaly 
(> 5 cm below costal 
margin)

1/18(6%) 7/12(58%) 0.005˚

Hemoglobin (g/dL) 10.7 (7.8 - 13.6) 10.2 (8.3 - 13.2) NS*
Platelets (x 109/L) 136 (14 - 709) 82 (13 - 262) 0.042*

WBC (x 109/L) 16,200 (3,220 - 
25,170)

36,480 (7,820 - 
93,860) 0.016*

Monocytes (%) 23(5 - 57) 22.5(10 - 74) NS*
Blasts in PB (%) 0(0 - 2) 1.5 (0 - 4) 0.002*
Serum LDH (U/L) 244 (129 - 970) 348 (120 - 738) 0.044*
Lysozyme (μg/ml) 65(18 - 366) 62 (14 - 246) NS*
Excess of blasts in 
BM (> 5%) 1/18 (6%) 6/12 (50%) 0.017˚

NS not significant, WBC white blood cells, PB peripheral blood, BM 
bone marrow 
*P of χ2 test
˚P of U- test (Mann- Whitney)

 In the “Austrian Biodatabase for Chronic Myelomono-
cytic Leukemia” (ABCMML) we retrospectively and prospec-
tively collect hematological, clinical, biologic and molecular in-
formation of patients with CMML from different centers in a real 
life setting. Using data from this database we were recently able 
to confirm our previous observations in a much larger patient 
cohort (n = 137). The diagnosis of CMML was made according 
to diagnostic criteria of the WHO classification of 2008. In this 
study we compared the amount of leukocytosis and splenomega-
ly between CMML patients with high colony growth ( > 100/105 

MNC) as compared to patients with low CFU-GM formation[80]. 
In agreement with our previous study high spontaneous myeloid 
colony formation was associated with increased WBC counts, 
increased blast cells, more pronounced splenomegaly and also 
inferior survival. Thus, these findings indicate that high sponta-
neous in vitro myeloid colony formation is not only associated 
with the presence of RAS pathway mutations[77], but also with 
leukocytosis, and splenomegaly. These results suggest that the 
myeloproliferative form of CMML with high spontaneous colo-
ny growth is a mainly RAS pathway driven malignancy. 

Progression of CMML and transformation into AML
 Little is known about factors contributing to the trans-
formation of CMML into secondary AML. There are some 
data on the role of RAS mutations in the progression of MDS 
to AML[81-83] but the contribution of RAS pathway mutations in 
the transformation process in CMML is poorly investigated. In 
a study with 22 patients classified as MD-CMML and in 18 pa-
tients classified as MP-CMML it was shown that MP-CMML 
patients had a higher frequency of RAS mutations compared with 
MD-CMML. In two patients who progressed from MDS-CMML 

to MP-CMML, allele specific PCR unveiled low levels of the 
RAS mutations predominating in the myeloproliferative phase 
at the time of myelodysplastic disease, documenting for the first 
time the expansion of a RAS mutated clone in concomitance with 
CMML evolution[79].
 We have previously reported in a small study that in 
patients with CMML spontaneous colony growth after trans-
formation was significantly increased as compared to CFU-
GM growth before transformation (Figure 5)[19]. Since we have 
shown that high spontaneous myeloid colony growth in CMML 
reflects RAS pathway hyperactivation in patients with CMML 
we hypothesized that molecular aberrations in the RASopathy 
genes may be responsible for transformation. Using data from 
the ABCMML we were recently able to address this question in 
a much larger number of patients by characterizing the clinical, 
molecular and biologic features of patients with CMML who 
developed AML[84]. Transformation into AML was defined as 
a blast cell percentage of at least 20% in the peripheral blood 
and/or bone marrow. Of the 355 CMML patients studied, we 
identified 47 who had already CMML derived AML at the time 
of inclusion (group A), 80 patients who later had documented 
transformation into AML (group B) and 228 patients, in whom 
no transformation was recorded (group C). CMML patients who 
developed AML (group A+B) had a significantly inferior sur-
vival, lower hemoglobin value, higher LDH, and higher spon-
taneous CFU-GM formation than patients who did not develop 
secondary AML. The incidence of RAS pathway mutations in 
group A+B was significantly higher than in group C (67% vs. 
37%). The incidence of TET2 mutations in group A+B was not 
significantly different from the incidence in group C. There was 
also no significant difference in the incidence of mutations with 
regard to other epigenetic modulators and to components of the 
spliceosome. Our data confirm that patients with CMML who 
transform into AML, not unexpectedly, have an unfavorable 
prognosis. In the majority of them the transformation process 
seems to be associated with hyperactivation of the RAS path-
way. 

Figure 5. Autonomous CFU-GM growth in CMML patients before (n 
= 30) and after (n = 7) transformation into RAEBT/AML. The median 
values, the 25% – 75% percentiles, and the minimum and maximum 
values are given. Spontaneous colony growth after transformation into 
RAEBT/AML was significantly increased as compared to CFU-GM 
growth before transformation (p < 0.005 by the U-test; adapted from 
Sagaster, V., et al, Ann Hematol 2004[19])
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RAS pathway mutations are uncommon in other myelopro-
liferative malignancies
 Although RAS mutations may be sometimes observed 
in the transformation process of other hematologic malignancies 
molecular aberrations of components of the RAS signaling path-
way are by far most prominent in JMML as it is known for a long 
time and in CMML as it has been shown by several groups in-
cluding ours[76,85]. In one study NRAS mutations were not found 
in any of the 86 CML patients in blast crisis. Only one patient, in 
whom the initial diagnosis of CML blast crisis had been revised 
to CMML, displayed an NRAS mutation within codon 13[86]. In 
another study in which targeted cancer exome sequencing was 
performed in BCR-ABL-negative MPNs NRAS mutations were 
found in only 4.7% of 168 patients with primary myelofibro-
sis (MF) and no patient with Polycythemia Vera (PV)[87]. The 
transformation process in BCR-ABL-negative MPN has been 
also investigated by other investigators. Using single-nucleotide 
polymorphism microarrays to identify chromosomal aberra-
tions, changes of chromosomes 1q, 7q, 5q, 6p, 7p, 19q, 22q and 
3q were positively associated with post-MPN AML including 
commonly affected genes such as FOXP1, TET2, IKZF1, CUX1, 
ETV6 and RUNX1[88]. In another study somatic mutations with 
loss of heterozygosity in TP53 were strongly associated with 
leukemic transformation[89]. Although evolution of subclones of 
RAS pathway could be found in some patients, other molecular 
aberrations were more prevalent and significant. Moreover TET2 
mutations seem to play an important role in the transformation 
process of BCR-ABL-negative MPN. Whereas data from us and 
others suggest that clonal disturbances of the epigenetic ma-
chinery usually precede the acquisition of RAS mutations and 
the emergence of a clone driven by hyperactivation of the RAS 
pathway in CMML, mutations in TET2 are commonly acquired 
at the time of leukemic transformation in BCR-ABL-negative 
MPN including MF, PV and essential thrombocythemia (ET)[90]. 

CMML with the JAK2 V617F mutation is a separate 
entity with hematological and biologic similarities to 
BCR-ABL-negative MPN
 Whereas proliferative aspects in most CMML cases are 
related to aberrations in RAS signaling pathways a few cases 
have been reported to demonstrate JAK2 mutations[91-93]. The 
JAK2 V617F mutation which is a typical finding in PV and in 
around 50% of patients with ET and MF, respectively[94-98], is 
much rarer in CMML but can be consistently found in a sub-
group of patients in larger series[6,45,49,92,99]. Due to the fact that 
JAK2 V617F-positive CMML is a rare disease the clinical, he-
matological and in vitro growth characteristics of this entity are 
poorly investigated. Recently, we characterized the clinical, 
hematological, molecular and biologic features of CMML pa-
tients with a JAK2 V617F mutation in our ABCMML[100]. We 
identified 13 CMML patients who had a JAK2 V617F mutation 
with an allele frequency > 20% who were compared to 105 pa-
tients who had NGS sequencing and were negative for the JAK2 
V617F mutation. JAK2 V617F positive CMML patients had sig-
nificantly higher WBC counts, higher hemoglobin values, higher 
platelet counts and more pronounced splenomegaly as compared 
to JAK2 V617F-negative patients. On the other hand the per-
centage on monocytes in peripheral blood and the number of 
myeloid colonies (CFU-GM) growing in vitro without addition 
of exogenous growth factors was lower in CMML patients with 
the JAK2 V617F mutation as compared to patients without this 

mutation. The majority of JAK2 V617F-positive patients had 
additional mutations that can be also found in JAK2 V617F-neg-
ative patients including mutations in genes encoding epigenetic 
regulators and splicing factors. Patients with the JAK2 V617F 
mutation had a trend towards a better OS than JAK2 V617F-neg-
ative patients. In a JAK2 V617F-positive CMML patient with 
splenomegaly, who was treated with the JAK1/2 inhibitor rux-
olitinib off label, we could demonstrate the disappearance of 
constitutional symptoms and a durable spleen response lasting 
now for 56 months. Out data show that CMML patients with the 
JAK2 V617F mutation have hematological, biologic and clinical 
characteristics different from JAK2 V617F-negative CMML pa-
tients. These findings suggest that JAK2 V617F-positive CMML 
patients should be regarded as a distinct subgroup with hema-
tological and biologic similarities to BCR-ABL-negative MPN 
which may benefit from specific pathogenesis oriented treatment 
concepts.

JMML and CMML with high spontaneous myeloid colony 
formation are both RAS pathway driven leukemias evolving 
from 2 distinct predisposition states
 We believe that from a pathophysiological point of view 
there are significant similarities between JMML and MP-CM-
ML. In both entities the RAS signaling pathway seems to play 
a major role in the expansion of the leukemic clone, the devel-
opment of the phenotype and the progression of disease. This 
hypothesis is suggested by the fact, that in JMML and MP-CM-
ML the incidence of mutations in components of the RAS sig-
naling pathway is much higher than in any other hematologic 
malignancy[85] and that both entities show the typical sponta-
neous formation of CFU-GM in vitro which cannot be found in 
other entities to a similar extent[15,75]. Both entities seem to fre-
quently develop on the basis of a genetic predisposition. JMML 
can be found in children with development disorders which are 
summarized by the term RASopathy. The RASopathies are a 
group of genetic syndromes caused by germline mutations in 
genes that encode components of the RAS signaling pathway 
including NRAS, KRAS, NF-1, PTPN11 and CBL[20,25]. Besides 
their developmental defects such as craniofacial dysmorpholo-
gy, cardiac, cutaneous, and musculoskeletal abnormalities they 
share a predisposition to JMML. Molecular alterations of these 
components in murine hematopoietic cells may lead to a myelo-
monocytic leukemia like phenotype in vivo and to spontaneous 
myeloid colony formation in vitro due to hypersensitivity of 
granulocytic/monocytic precursors against GM-CSF. In contrast 
age related clonal hematopoiesis is likely to form an acquired 
predisposition state for the development of CMML in elderly 
patients. In particular TET2 mutations are found in a high per-
centage of CMML patients on the one hand and are increasingly 
found in normal individuals beyond 50 who then have a signifi-
cantly increased risk to develop myeloid blood cancer[68,69].
 Although mutations in components of the RAS signal-
ing pathway are highly prevalent in JMML and MP-CMML, 
differences between both leukemias exist with regard to the in-
cidence of loss of function mutations of NF1. The absence of a 
functional tumor suppressor gene on one allele of the germline, 
as it is the case in children with NF, favors loss of function muta-
tions to become functionally relevant, since only one additional 
somatic mutation in such a gene is sufficient to completely inac-
tivate the inhibitory component of the RAS pathway which will 
then results in increased RAS signaling. In CMML, however, the 
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predisposition associated with age related clonal hematopoiesis 
in elderly patients would favor additional mutations in general 
and one gain of function mutation in a stimulatory RAS path-
way gene alone could become functionally relevant, sufficient 
to expand the malignant clone and to drive the phenotype. This 
hypothesis may easily explain the fact that loss of function mu-
tations in NF1 are more prevalent in children with JMML than 
in CMML.
 Due to the diversity of mutations found in CMML pa-
tients some investigators argue that CMML is a heterogeneous 
disease without common pathogenesis in contrast to JMML 
which is a more genetically homogenous disease and in which it 
is generally accepted that this leukemia is a RAS pathway driven 
malignancy[85]. However, in vitro findings by us[18] and others[101] 
suggest that divergent molecular aberrations in CMML seem 
to converge within the GM-CSF signaling pathway. Moreover, 
the higher number of mutations found in CMML might partly 
be explained by the fact that some of these mutations might be 
only clonal drivers that cause an acquired predisposition state 
for the development of additional mutations but actually have no 
major role in the myeloproliferation of the disease which even-
tually requires treatment. Many of these mutations including 
TET2 can be found in normal individuals without overt leuke-
mia suggesting that they are not necessarily contributing to the 
leukemic phenotype. In contrast mutations in genes of the RAS 
pathway components are usually not found in normal individu-
als and have been shown by us and others to be associated with 
progression of CMML and with transformation of CMML into 
secondary AML suggesting that mutations in these genes play 
a major role in expanding the malignant clone and causing the 
myeloproliferative phenotype. Therefore we think that there is 
sufficient evidence indicating that the myeloproliferative form 
of CMML is in the majority of patients a RAS pathway driven 
disease which is superimposed onto age related clonal hemato-
poiesis and that it could be beneficial to target this pathway by 
RAS pathway inhibitors to reverse the phenotype of the disease. 
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