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Abstract

	 Lung cancer is a common malignant tumor including Small Cell Lung Cancer 
(SCLC) with 10 - 15 % and Non-Small Cell Lung Cancer (NSCLC) with 70 - 80%. 
Currently, there are several approaches to be used to treat lung cancer including sur-
gery, chemotherapy, radiation therapy and molecular therapy/immunotherapy, Meta-
static SCLC, metastatic mixed type of lung cancer and unclassified lung cancer are still 
difficult to be cured because this kind of lung cancer is easy to be widely disseminated. 
For example, if a patient has several metastatic SCLC, the patient will reveal poor out-
come. In order to resolve the poor prognosis with recurrent and metastatic SCLC, here 
we reported a pathway-based approaches for analysis of Genome-Wide Association 
Studies (GWAS) to screen drugs, hence we used the drugs to treat a patient suffering 
from SCLC with multiple metastases. In the beginning, we harvested a pair of SCLC 
cells and normal cells from FFPE samples under laser capture microscopy to achieve 
the tumor cell DNA for SNP profile. After uncovering SCLC SNP profile, genes related 
to SNP signature was used to map quantitative network to uncover targeting drugs. 
Synchronously, the targeting SNPs genes were further confirmed by TaqMan PCR and 
Sanger’s sequencing. Furthermore, selected drugs were also validated for the SCLC 
cells by computational modeling. Finally, the drugs approved by FDA were adminis-
tered for the patient to the personalized therapy. All in all, after the drugs were discov-
ered by GWAS profiles through quantitative network, we successfully achieve a good 
response for the patient who has suffered from SCLC with multiple metastases.
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Introduction

	 Personalized medicine is a new generation model to be 
directly tailored for physicians to care individual patient relying 
on personal genomic profiles[1]. It is often called as “the right 
treatment for the right person at the right time.” A satisfactory 
personalized therapy should have a rational genomic modeling 
to achieve sensitive drugs for clinical applications[2]. Following 
Research and Development (R&D) of genomic modeling and 
analysis, clinical sampling along with system modeling has been 
increasingly reported for personalized therapy[3]. Here we intro-
duce a pathway-based approaches for analysis of Genome-Wide 
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Association Studies (GWAS) to screen drugs, and thus we report 
a case by using the model including clinical sampling by Laser 
Capture Microscopy (LCM) to harvest Small Cell Lung Cancer 
(SCLC) and normal cells from FFPE tissues (Formalin-Fixed 
Paraffin-Embedded tissue), to analyze SNP profiles and then to 
discover SNP signature related gene by system modeling as well 
as to uncover sensitive drugs from drug-bank for the patient suf-
fering from SCLC metastasis. 
	 Clinical sampling for genomic analysis of tumor cells 
consist of a pair of surgical tumor tissue vs normal tissue by 
in vivo harvest, or from a pair of tumor cells vs normal cells in 
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situ harvest obtained from Laser Capture Microscopy (LCM) or 
from a pair of cells by ex vivo culture from clinical specimens[4]. 
Here a pair of SCLC cells vs normal control cells obtained from 
LCM was used to GWAS and SNP analysis for the SCLC pa-
tient. In addition, system modeling concerning SNP signature 
has the ability to provide some important information required 
for therapeutic targeting identification and drug discovery[5]. Af-
ter SNP signature database were combined with quantitative bio-
informatics analysis, SNP related genes can provide us to identi-
fy therapeutic targeting genes and to discover drugs for patients 
with drugs sensitivity for the tumor diseases[6]. Here, in order to 
introduce a case report using pathway-based approaches of Ge-
nome-Wide Association Studies (GWAS) to screen drugs for a 
patient suffering from SCLC with multiple metastases, we pres-
ent a mining process including harvesting a pair of SCLC cells 
and normal control cells, performing SNP microarray, mining 
significant or functional SNP for signature SNP, finally uncover-
ing sensitive drug for the patient application. Following the four 
steps, that is, clinical sampling, SNP performance and mining 
SNP profile, discovering SNP signature related genes, uncov-
ering sensitive drugs, finally, a list of sensitive drugs targeting 
SCLC will be used to personalized chemotherapy for the patient. 

Clinical Specimens and Methods

Patient and specimen
	 The patient was given diagnoses according to clinical 
criteria. Informed consent of the patient was obtained before 
tumor tissue sampling. SCLC was diagnosed and classified ac-
cording to cell type by conventional pathology. After SCLC tis-
sues embedded on slides about 10- μm section was stained with 
light May-Grunwald-Giemsa staining method(MMG), laser 
capture microscope (Zeiss Palm Microbeam IV Laser Capture 
Microscope) identify regions rich in tumor cells and normal tis-
sues as our previous report[7]. The tumor-rich regions and normal 
cells were isolated by LCM to harvest the specimen DNA. 

Genomic DNA and QC Analysis
	 Because DNA on FFPE slides had been discovered 
degradation, DNA were amplified and rescued by two process-
es. Whole-Genome Amplification (WGA) was performed by us-
ing the Genome Plex Single Cell Whole Genome Amplification 
kit (Sigma-Aldrich) according to the manufacturer’s protocol[8]. 
Briefly, after degraded DNA was harvested in tubes, the sample 
was complemented to 9 μL nuclease-free water and 1 μL single 
cell lysis with proteinase K mix. The subsequent incubation for 
cell lysis (50 °C for 1 h) as described by the manufacturer. WGA 
products were purified with the GenElute PCR Clean-Up kit 
(Sigma-Aldrich). After DNA specimens from SCLC and normal 
control cells were amplified, we also performed DNA rescuing 
with FFPER estore Protocol Kit (Illumina Inc Santa Clara, CA) 
according to the manufacturer’s protocol[9]. The amplified and 
rescued DNA was quantified by Nano Drop 2000 and its ampli-
con from GAPDH with PCR primers design for 100 bp, 500 bp 
and 1 kb amplification was demonstrated by PCR with DNA gel 
running and quantified by DNA UV quantification for rescuing 
assay. 
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SNP Microarray Performance
	 Each 800 ng of DNAs was sent to Genomic core in 
Kansas University Medical Center to perform SNP 6.0 microar-
ray (Affymetrix SNP 6.0 with 906,600 SNPs) for the experi-
ments[10]. Affymetrix SNP 6.0 were processed using the Genome 
Alteration Print method to obtain absolute SNP and copy num-
ber profiles. Affymetrix Genotyping Console 3.0.2 were used to 
transfer the signal intensities into CEL files and determine signal 
intensities. The samples passed the Affymetrix QC threshold as 
QC Call Rate > 87 % and genotype calls of CEL files were made 
using Birdseed v2 (Affymetrix GTC software). 

Bioinformatics analysis
	 We first uncovered significant SNP based on the geno-
type calls from the paired tumor cells and normal cell samples 
by which we excluded any SNP obtained from normal control 
cells, leaving tumor SNPs for further analyses. Moreover, be-
cause genomic DNA amplification and rescuing were performed 
and because personalized therapy more focus on SNP-based 
genotype change, we excluded any LOH and CNV from all tu-
mor cells so that only SNP change from tumor cells was subject 
to further study SNP-based therapeutic targeting. Important and 
functional SNP was analyzed by SNP related key genes by SNP 
annotation software. In order to study SNP targeting therapy, we 
used two ways to mine SNP related targeting: pathway-based 
SNP targeting and SNP-direct-drug targeting. 
	 In pathway-based SNP targeting analyses, PINBPA 
software plugged in Cytoscape 3.3 platform has been imple-
mented for the analysis[11]. All genes related functional SNPs 
were sorted by their genomic coordinates and defines signature 
SNP by the platform with threshold cutoff (p-value < 0.05). Af-
ter harvesting signature SNP related genes, a python platform, 
which we have published[12], discover the signature SNP related 
genes and drugs. Our quantitative analysis and network topolo-
gy focused on Betweenness Centrality (BC) and Degree Central-
ity (DC) as our previous report[13].

Validation of Signature SNP with their Drugs for Clinical 
Application
	
SNP-direct-drug targeting: After signature SNPs profiles were 
uncovered, GeneGo software and Genebank were used to search 
drugs[14], several sensitive drugs related signature SNP for SCLC 
was directly discovered to use for targeting SCLC. 

Pathway-based SNP targeting: Drugs related with therapeu-
tic identification SNP and genes was identified by Python-based 
platform which we have published for network topology with 
computational analysis for specifically targeting the SCLC[15].

Validation of signature SNP: TaqMan genotype technique was 
used to confirm SNPs and Sangers sequencing was used for SNP 
detection related with the assay of specificity and sensitivity. 
Both techniques were performed according to the manufactur-
er’s and equipment protocol (Thermo Fisher Scientific)[16].

Results

Patient information
	 The patient is 58 years old male. In December, 2015, 
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he had cough with blood streak in sputum. Multiple masses were 
found with increase of FDG uptake in the inferior lobe of left 
lung by PET/CT. In addition, multiple bone destructions were 
seen in bilateral ribs, C2, T1, T9-10, L3-4 vertebral bodies, bilat-
eral iliac bones, bilateral pubic bones, right acetabular bone, left 
caput femoral bone including FDG uptake obviously increased 
in the cervical, thoracic and lumbar vertebra. Liquid-based cys-
toscopy from biopsy reported that poorly differentiated carcino-
ma, small cell carcinoma in mediastinum lymph nodes.

Results of genomic DNA performance and SNP microarray
	 In order to mine SNP profiles from patient specimens, 
we used LCM technique to harvest a pair of cells under MMG 

staining for 1 min. as Figure-1A-I. Total 28 SCLC clusters with 
93 % tumor cells as Figure-1A-II and 15 normal control cells 
cluster were harvested as Figure-1A-III. Because DNA on FFPE 
slides had been discovered degradation as Figure-1B-I. After 
WGA and DNA recuing process as Figure-1B-II, amplified and 
rescued DNA demonstrated recovery rate 90 - 92 % in 10 0bp 
amplicon, 78 - 79 % in 500 b amplicon and 56 - 58 % in 1kb, 
respectively, as Figure-C. Each 800 ng of DNAs (T-1 and T-2) 
was performed for SNP 6.0 microarray (Affymetrix SNP 6.0 
with 906,600 SNPs) for the experiments. Affymetrix Genotyp-
ing Console 3.0.2 were used to mine SNP and CNV with QC 
(QC Call Rate > 87 % ) under Birdseed v2 (Affymetrix GTC 
software) as Table-1. 

Figure 1: A-I Giemsa stain with 1 minute staining is under 5x magnificence microscope before LCM; A-II is SCLC cell clusters and A-III is nor-
mal control cell cluster which were harvested by LCM.B-I is DNA gel: T1 and T2 demonstrate DNA degradation to compare C1 (LCM pick up 
Hela cell as fixed Hela cells) and C2 (culture Hela cells as living cells); B-II is DNA gel. T1 and T2 demonstrate DNA are rescued as to compare 
C1 (LCM pick up Hela cell) and C2 (culture Hela cells); C shows that DNA amplicon from GAPDH genes which are designed length with 100 bp, 
500 bp and 1000 bp; Top picture in C-I demonstrate DNA degradation at 100 bp, 500 bp and 1 kb and bottom picture DNA in C-II are rescued at 
100 bp, 500 bp and 1 kb to compare C1 (LCM pick up Hela cell) and C2 (culture Hela cells).

Table-1. QC results for GWAS.
 File Bounds Contrast QC QC Call Rate CHP/CEL
1 T1_061416_(GenomeWideSNP_6).CEL In 1.82 93.75 1
2 T2_061416_(GenomeWideSNP_6).CEL In 1.71 93.85 1

Results of GWAS
	 After both SCLC SNP (called as T-1) and normal control cells SNP (called as T-2) were performed by Affymetrix SNP 
6.0 chip, each with total 906,600 SNPs, 1425 SNPs (only from tumor cells) were discovered as Supplement_Table-1, and thus the 
results are demonstrated as Figure-2. We also mined CNV (copy number variances) from all tumor cells and normal control cells as 
Figure-3A and Figure-3B in which green colors indicating gaining variances and red color meaning lose variances. Total 1104 CNV 
all tumor cells were discovered as Figure-3C. Because current personalized therapy was designed by pathway-based approaches 
from GWAS, SNP-based genotype change from tumor cells was used to analysis, and therefore 924 gene-related to SNP (called as 
functional SNPs) were uncovered as Supplement Table-2. In pathway-based approaches from the signature SNP, their genes analysis 
was implemented by PINBPA software plugged into Cytoscape 3.3. All genes related functional SNPs were sorted by their genomic 
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coordinates and defines association blocks at user-defined threshold (p-value < 0.05).

Figure 2: T1 (blue) and T2 (green) results from SNP and CNV microarray performance and analysis indicating chromosomes are differences 
between tumor sources and normal control. Because chromosomes are largely different at chromosomes1, 3, 5, 7, 9, 11, fig-2 show C1, C3, C5, 
C7, C9, C11 changes at CNV and SNP.

Figure 3: A demonstrates CNV from T-1 and B means CNV from T-2.

http://www.ommegaonline.com
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Table-2 SNP directly Targeting Genes and Drugs.
Associated Gene dbSNP RS ID Chromosome Targeting drugs Targeting molecular therapy
ALK rs12052994 2 carboplatin crizotinib, ceritinib
KRAS rs10505978 12 carboplatin, paclitaxel, pemetrexed, docetaxel erlotinib
MEGF10/11 rs9327438/rs10518678 5_15  erlotinib, gefitinib, and afatinib
TP53I3 rs2303287 2 docetaxel

 
Drug discovery
	 After harvesting signature SNP related genes, SNP-direct-drug targeting were uncovered by GeneGo software and Gen-
ebank. In SNP-direct-drug targeting, we found several drugs and molecular therapy for KLF, KRAS and EGF and TP53I3 related 
SNP such as Carboplatin at Table-2. 
	 In order to study a practicable platform, Betweenness Centrality (BC) indicates effect and Degree Centrality (DC) means 
both effect and side-effect under a python-based platform as our previous study. Accordingly, pathway-based SNP targeting were 
used to analyze sensitive and specific drugs, and therefore a list of sensitive drugs was discovered by the network topology as Ta-
ble-3. As shown in Table-3, cisplatin, irinotecan and etoposide are top sensitive to targeting SCLC cells from the patient. The results 
of pathway-based GWAS analysis including targeting genes, drugs and SCLC cells was performed as Figure-4A1 and Figure-4A2 
and mined as Figure-4B with computational mimic analysis under Python scripts to confirm specifically targeting to the patient 
SCLC cells.

Figure 4: A-1 is Betweenness scatter plot and A-2 is Degree scatter plot; B is network results from gene related SNP signatures in SCLC cells 
including genes, drugs and SCLC cells. Pink color is network indicating the genes-drugs related to SCLC.

Table-3. Pathway-based approaches for GWAS.
Name Betweenness 

Centrality
Degree 
Centrality

Cisplatin 0.06046899 18
irinotecan 0.01758476 10
Etoposide 0.01395787 10
Ifosfamide 0.00967844 4
imatinib 0.00753371 6
Methotrexate 0.00741667 7
Topotecan 0.00695399 5
Doxorubicin 0.00575564 10

Vincristine 0.00438819 4
Paclitaxel 0.00417765 7
Cyclophosphamide 0.00361606 4
gemcitabine 0.00355958 6
Vindesine 0.00328222 2
Epirubicin 0.00154738 4
Thalidomide 0 3
Carboplatin 0 2
Metoclopramide 0 2
Lomustine 0 1

http://www.uptodate.com/contents/erlotinib-drug-information?source=see_link
http://www.uptodate.com/contents/docetaxel-drug-information?source=see_link
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Drugs verification and clinical results
	 After mining therapeutic target and discovering drugs, finally the both groups of SNP signature were confirmed by TaqMan 
PCR, and thus SNP sensitivity (93 % ) and specificity (68.3 % ) were supported by Sanger sequencing. 
	 Target drugs related to SNP signature genes, which have been approved by FDA, were used to the patient. According to 
drug list from pathway-based SNP targeting, in which cisplatin and etoposide combination therapy have been approved by FDA, 6 
courses cisplatin and etoposide were administered to the patient. After 6 courses of cisplatin and etoposide were administered to the 
patient as Table-4, tumor masses in left lung was decreased from 3 x 4 cm into 0.8 x 1.1 cm as in Figure 5A1 and Figure 5A2 from 
X-ray. The metastasis in left lung, thoracic vertebra and lumber vertebra have partial responses after the 3 month’s personalized 
therapy with observation in the following 3 months as Figure 5B and 5C from CT. The patient side-effects were demonstrated as 
Table 5.

Table-4. Drug Administer.
Case Drugs FDA approval Dosage Application methods

YZ 
VP-16 Approval 220 mg d1-3 x6 intravenous
DDP Approval 56 mg d1-3 x6 intravenous

Figure 5: A-1demonstrates X-ray results before treatment with a large mass in left lungs and A-2 demonstrates X-ray results after treatment with a 
mass decrease in left lungs; B shows PET/CT results indicating multiple metastases in left lung, thoracic vertebra and lumber vertebra; C demon-
strates partial responses in CT picture after three months of personalized chemotherapy.

http://www.ommegaonline.com
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Table-5. Drug side-effect.
Side-effect Course-1 Course-2 Course-3 Course-4 Course-5 Course-6
Grade of Adverse Events 3 2 2 2 2 1
Leukopenia Yes Yes Yes Yes Yes Yes
Nausea and vomiting Yes Yes Yes Yes Yes Yes
weight gain Yes Yes Yes Yes Yes Yes
Alopecia Yes Yes Yes Yes Yes Yes
Cardiac function No No No No No No
Edema No No No No No No
Thrombocytopenia No No No No No No
Shock, sepsis No No No No No No
Systemic infection No No No No No No

Discussion

	 Major advances in human genome with their techniques 
provide our ability to identify SNPs related to the prevalence 
of genetic, tumor and some rare diseases[17]. Three ways can 
detect SNPs based on a given laboratory with their laboratory 
conditions. RNA-Seq can discover both global SNPs and tran-
scriptome profiles, DNA-Seq can achieve global and unknown 
SNP data, and SNP microarray should harvest global SNPs due 
to the priori information[18]. After SNPs are detected by global 
methods, GWAS pairing disease-control samples with a statis-
tical analysis can determine whether the alleles at the marker 
can predict the phenotype alteration. If GWAS reaches statistical 
significance after multiple testing, the variant is considered to be 
associated with the diseases. Now SNPs has been successfully 
conducted by GWAS to predict disease risks[19]. In addition, fol-
lowing risks prediction to GWAS to identify SNP related with a 
given disease, functional SNPs techniques are further studied for 
causal SNP discovery. GWAS related to functional SNPs play 
an important role in pathogenesis, prediction and precaution 
of diseases[20]. As reported in 2014, almost 2,000 publications 
have reported associations of more than 13,000 Single Nucle-
otide Polymorphisms (SNPs) with close to 200 phenotypes in 
the GWAS Catalog[21]. The successful record of this genomic 
mapping strategy includes the identification of dozens or even 
hundreds of susceptibility alleles in common diseases such as 
multiple sclerosis, type 1 and type 2 diabetes, lymphoma, leuke-
mia, and metabolic disorders[22].
	 Despite GWAS has been extensively used to identify 
susceptibility in common diseases, this is a necessary to develop 
GWAS-link, global and individual, of phenotype markers. These 
approaches called as pathway analysis aim at identifying func-
tional relationships among GWAS associated proteins and dis-
eases. Fortunately, after these data have been quickly integrated, 
such as SNP-protein, SNP-phenotype, protein-protein and gene/
protein-drugs, a network has emerged in SNPs profiles called as 
“SNP-gene-protein-phenotype-drugs” combined by system bi-
ology[23]. Now, personalized medicine related with pharmacog-
enomics information can predict drugs response from individual 
Single Nucleotide Polymorphisms (SNP) and Genome-Wide 
Association Studies (GWAS)[24]. The interdisciplinary method 
can construct systems to guide a suggested treatment for per-
sonalized medicine. Here, we first set up “Pathway-Based Ap-
proaches from Genome-wide Association Studies” based on our 

previous study, or, higher BC is related with higher effect where-
as higher both BC and CD are related higher effect and higher 
side-effect. On the other hands, higher BC are related with high-
er effect whereas only lower CD is related with lower toxicity[25]. 
	 The patient has multiple metastasis from SCLC so that it 
is good candidate for personalized therapy. In order to mine SNP 
profiles specific from SCLC cells, we applied for LCM sampling 
to harvest SCLC called to compare normal control cells. After 
we mined SNPs from SCLC, like most GWAS analysis, SNPs 
from tumor cells (1425 significant SNPs from tumor cells) was 
subject to further study pathway-based approaches from GWAS 
data. Although Affymetrix SNP 6.0 chip have total 906,600 
SNPs and CNV on the chip, current personalized therapy was 
designed for SNP-based pathway approaches from GWAS. In 
pathway-based approaches from GWAS, the SNP related genes 
were used to discover the signature SNP related genes and drugs. 
According to mining therapeutic targeting and drugs, clinically, 
target drugs approved by FDA were selected to the patient treat-
ment. Because cisplatin and etoposide combination therapy have 
been approved by FDA, six courses cisplatin and etoposide were 
administered to the patient. After six courses of cisplatin and 
etoposide were administered for the patient, tumor masses in left 
lung was decreased and metastasis in left lung, thoracic vertebra 
and lumber vertebra have partial responses with observation in 
the following 3 months. This case report demonstrated that a 
pathway-based approaches for GWAS analysis can successfully 
achieve a good response for clinical patient. 
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