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Introduction

Pesticides are used widely through the world for control agricultural pests and protect 
public health. Though these chemicals have many profitable purposes, they may also cause 
negative effects in both humans and animals. These chemicals are extensively used in in-
dustry, agriculture, home and gardens for several different purposes including the pro-
tection of seed grain during storage and germination[1]. Pesticidescontaminations of the 
environment have become one of the main problems in the region of Europe, Eastern 
Mediterranean and Africa, as well as worldwide importance. The presences of these toxic 
chemicals were recorded in water, air, house dust and in the tissues of non-occupationally 
exposed people, predominately in the adipose tissue, blood and urine[2]. Many pesticides 
extend their biological effects basically through electrophilic attack of cellular constituents 
with simultaneous production of Reactive Oxygen Species (ROS). ROS is a main cellular 
origin of oxidative stress[3,4].
 Metalaxyl is a systemic benzenoid fungicide used in a mix of foliar spray for trop-
ical and subtropical crops, such as a soil treatment for inhibit of soil-borne pathogens, and 
as a seed treatment to inhibit downy mildews, fungal diseases on cotton, fruits, peanuts, or-
namentals and soybeans[1]. It is used in several states worldwide including USA, European 
nations, Australia and India[5]. The issues causing from metalaxyl originate from their high 
residual level in agriculture crops predominately cultivated vegetables under greenhouse 
situation and other components of the environment[6]. Metalaxyl exposure caused abnormal 
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Abstract

 Pesticides play an important role in hepatotoxicity and liver damage. Lycopene is known to possess several ben-
eficial properties including; antioxidant and anti-cancer effects. However, there is a lack of relevant information on 
its importance in chronic fungicide-induced hepatotoxicity. Therefore, our study was to assess the protective role of 
lycopene on metalaxyl-induced oxidative stress in liver tissue of male rats. The experiment was designed for 8 weeks 
and male albino rats were divided into 3 groups (n = 14). Group 1 served as normal control (with no treatment), group 
2 metalaxyl exposed group; rats received metalaxyl at a dose level of 1/10 LD50 (130 mg/kg b.wt) orally three times 
per week, group 3 metalaxyl and lycopene;rats received metalaxyl (130 mg/Kg b.wt) orally three times per week and 
treated daily with lycopene (10 mg/kg b.wt/ orally). Our data showed that metalaxyl significantly increase serum Ala-
nine AminoTransferase (ALT), Aspartate AminoTransferase (AST), Alkaline Phosphatase (ALP) activities, enhanced 
levels of L-MalonDiAldehyde (L-MDA), Nitric Oxide (NO), MyeloPerOxidase (MPO) and up-regulation of nuclear 
factor kappa B (NF-κB), tumor necrosis factor alpha (TNF-α), interlukin-6 (IL-6), caspase-8 gene expression, induced 
DNA damage. Meanwhile, down-regulation peroxisome proliferator activated receptor alpha (PPAR-α) and decreased 
the liver superoxide dismutase (SOD) and catalase (CAT) activities. Lycopene treatment was restored the hepatic anti-
oxidant status which had indicated the significant protective effect against metalaxyl induced hepatotoxicity and finally 
confirmed by histopathologicaland immunohistochemical studies.
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biochemical and hematologicalactivitiesinduce oxidative stress 
and an observable toxicityin liver[7,8].
 Nitric oxide plays significant and diverse roles in the 
liver with possibilities for both liver cells protections from inju-
ry and aggravation of injury. The substantial factors in determin-
ing whether NO will be protecting or injurious are the location 
of NO generation and the amount of NO being produced[9]. It 
is an uncharged lipophilic molecule including a single unpaired 
electron, which leads it to be interactive with other molecules as 
glutathione, oxygen and superoxide radicals. Mean while NO 
is not a very reactive free radical it is fit to form other reactive 
intermediates, which have effect on entire organisms’ function 
and protein. These reactive intermediates may be trigger nitra-
tive damage on biomolecules[10]. Excessive of NO in the mito-
chondria enhances the generation of ROS and Reactive Nitrogen 
Species (RNS) which can modify various processes activity such 
as oxidative stress, mitochondrial biogenesis and respiration[11].
 To control ROS leveland to protect cells under stress 
conditions, mammalian tissues contain many enzymatic and 
non-enzymatic antioxidants that scavenge ROS[12,13]. Due to per-
sistent exposure of pesticides, these endogenous antioxidants 
level minimizes leading to cell death acceleration[12]. Natural and 
synthetic sources of antioxidants have proved to be highly effec-
tive to control the magnitude of free radicals’ production, to in-
hibit its unfavorable effects, as well as to prop the antioxidant of 
living organism and the mechanisms of detoxification[14]. Lyco-
pene is one of the most potent antioxidants among the dietary ca-
rotenoids. It has an acyclic isomer of beta-carotene which gives 
tomatoes, pink guava, apricots, pink grapefruit, watermelon, 
rosehips and red oranges their red color. Humans and animals 
can’t synthesis lycopene and depend on dietary sources. It also 
has anti-inflammatory and anti-cancer effects[15,16]. Lycopene 
may have exerting protective influences to carcinogen-induced 
liver, lung and mammary tumors on experimental animals[17]. 
According to the structural formula of lycopene represented in 
Figure 1, various mechanisms involved in the health-beneficial 
effects of lycopene have been reported, due to a high number 
of conjugated dienes lycopene is particularly effective in singlet 
oxygen scavenging, and its ability is twice higher than that of 
β-carotene and ten times higher than that of α-tocopherol. Re-
cently, it has been assumed that, lycopene directly modulates 
many redox-sensitive signaling pathways being responsible 
for cell regulatory function. As, antioxidant response element 
(ARE), ROS-producing enzymes, Mitogen-Activated Protein 
Kinases (MAPK), nuclear factor-κB (NF-κB) as well as re-
dox-sensitive proteins participated in modulation of cell cycle 
and apoptosis (B-cell lymphoma-2 (Bcl-2) family proteins and 
Ku protein)[18]. A lot of studies about lycopene have been pub-
lished, most of them focused on anti-apoptotic effect of lycopene 
in cancer cells, only few studiesindicatedthe possible beneficial 
effect of lycopene against deleterious effect of pesticide. There-
fore, the present study was planned to investigate the protective 
role of lycopene in overcoming the oxidative damage induced in 
liver of male rats after exposure to metalaxyl fungicide.

Figure 1: Chemical structure of lycopene.

Material and methods

Chemicals
Metalaxyl: Metalaxyl[N-(2,6-Dimethylphenyl)-(methoxyace-
tyl) – DL-alanine methyl ester], 98% technical grade was ob-
tained from Zhejiang Heben Pesticide and Chemicals Co., Ltd. 
China. Metalaxyl was dissolved in 430 µL of dimethyl sulfox-
ide (DMSO) and 5.6 mL of propylene glycol was added. Fresh 
metalaxyl preparation was administered orally three times per 
week at a dose of 130 mg/kg b.wt (1/10 of LD50)

[19].

Lycopene: Lycopene(ψ,ψ-Carotene,2,6,10,14,19,23,27,31 – 
Octamethyl – dotriaconta-2,6,8,10,12,14,16,18,20,22,24,26,30-
tridecaene), was obtained from Aktin Chemicals, Inc. company 
(Nature connecting health), Chengdu, China., and given orally at 
a dose level 10 mg/kg b.wt daily for 8 weeks[20].

Preparation of lycopene stock solution: 100 mg of lycopene 
was mixed with 2 ml of tween-80 at room temperature until a 
homogeneous paste was obtained. Then physiologic saline was 
added drop wise with continued vigorous stirring at room tem-
perature, to reach a final concentration of 10 mg of lycopene/mL 
of suspension[21].

Animals and treatment: Forty-two male albino rats weighing 
between 150 to 200 g were purchased from laboratory Animals 
Research Center, Faculty of Veterinary Medicine, Benha Uni-
versity. Animals were housed in stainless steel cages and main-
tained on 12 hours, light/dark cycle, (23 ± 2°C) and 50 – 70% 
relative humidity. Water and food were provided ad libitum. 
Rats were adapted for 15 days before the start of experiment. 
All the animals received humans care according to the criteria 
outlined in the Guide for the care and used of laboratory animals 
prepared by the National Academy of Science and published by 
the National Institute of Health.
 Male albino rats were divided into three groups each 
group containing fourteen rats. Total duration of experiment was 
8 weeks. Group 1 served as normal control group (rats received 
no treatment), Group 2 metalaxyl treated group (rats received 
metalaxyl at a dose level of 1/10 LD50 (130 mg/kg b. wt) orally 
three times per week), Group 3 metalaxyl and lycopene group 
(rats received metalaxyl 130 mg/Kg b. wt orally three times per 
week and treated daily with lycopene 10 mg/kg b. wt/ orally). 
 
Sampling: Blood samples and liver tissue specimens were col-
lected from animals two times along the duration of experiment 
at 4 and 8 weeks from the onset of rats exposed to metalaxyl.

Blood samples preparation: The rats were anesthetized with 
intraperitoneal injection of sodium pentobarbital (35 mg/kg b. 
wt). Blood samples were collected by ocular vein puncture se-
rum was separated by centrifugation at 3000 rpm for 15 minutes 
to estimate AST, ALT, ALP activities and NO concentration.

Tissue samples
Liver tissue homogenate for biochemical analysis: The rats 
were sacrificed and a portion of the liver tissues specimen was 
isolated. After isolation, liver tissues were weighed and minced 
into small homogenized pieces with a glass homogenizer with 
9 volume of ice-cold of 0.05 mM potassium phosphate buffer 
(pH7.4) forgetting 10% homogenates. The liver tissue homoge-
nates were centrifuged at 6000 r.p.m for 15 minutes at 4°C then 
the supernatant was used for the estimation of following param-
eters: levels of MPO, L-MDA, CAT and SOD.
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Liver tissue preparation for molecular gene expression: An-
other portion of liver tissue were mincing into small pieces, they 
were placed in eppendorf tubes, snap-frozen in liquid nitrogen 
and storage at -80°C till RNA extraction for determination of: 
NF-κB, IL-6, TNF-α, PPAR-α, caspase-8 and DNA damage.

Histological analysis and immunohistochemical analysis: A 
portion of liver samples were fixed in 10% formalin immediate-
ly after harvesting for histopathological examination according 
to the technique described by Bancroft, and Stevens[22]. Immuno-
histochemical staining for the proapoptotic marker Bcl-2 antag-
onist-X (BAX) protein examination according to the technique 
described by Kiernan[23]; Sakr and Abdel-Samie[24].
 The severity of the microscopical lesions fundamental-
ly in the liver were classified to degree 1, slight changes includ-
ing congestion of blood vessels, mild hepatocellular swelling 
due to hydropic degeneration; degree 2, moderate changes in-
cludes clear hepatocellular swelling in centrilobular and mid-
zonal areas, in association with leukocytic cellular aggregation; 
degree 3, severe changes includes diffuse and severe hepatocel-
lular swelling and necrotic areas[25].

Biochemical parameters
Biochemical of hepatic marker enzymes: Hepatic marker en-
zymes in serum namely, ALT and AST activities were estimated 
according to the kinetic method described by Schumann et al.[26] 
and serum ALP activity was determined using commercially 
available kits according to the enzymatic method described by 
EL-Aaser and EL-Merzabani[27]. AST, ALT and ALP activities 
are expressed as U/L.

Determination of NO level: The concentration of NO in serum 
was estimated according to the method described by Vodovotz[28]. 
Total nitrite was measured using cadmium-mediated reduction 
of NO3 to NO2 then the Griess reagent producing a pink color 
and measured at 540 nm against reagent blank. NO is expressed 
as μmol/L.

Determination of L-MDA level: The estimation of L-MDA 
concentration (as marker of lipid peroxidation) in liver tissue 
was based on the method of Mesbah et al.[29]. L-MDA amount 
was calculated as nmol/g tissue.

Determination of MPO activity: Myeloperoxidase activity in 
liver tissue was estimated according to Bradley et al.[30]. More 
especially, assay mixture (3.0 ml) consisted of cell lysate (0.1 
ml) prepared in 0.5% hexadecyltrimethylammonium bromide 
containing phosphate buffer and reaction buffer (50 mM phos-
phate (pH 6.0) buffer containing 0.167 mg/ml o-diaziridine hy-
drochloride and 0.0005% H2O2). After 1 min. the altered in ab-
sorbance was measured at 460 nm and the activity of enzyme is 
expressed as unit/milligram of tissue.

Free radical scavenging enzyme estimation: Catalase and 
superoxide dismutase activities in liver tissue were determined 
according to the methods suggested by Xu et al.[31] and Kakkar 
et al.[32] respectively. 

Estimation of NF-κB, TNF-α, IL-6, PPAR-α and caspase-8 
gene expression: Gene expression of NF-κB, TNF-α, IL-6, 
PPARα and caspase-8 levels were assessed in the liver using 
real-time quantitative polymerase chain reaction (real- time 
qPCR) analysis. Total RNA from liver was separated using the 

high pure RNA isolation kit (iNtRON Biotechnology, easy-RED 
Total RNA Extraction Kit) based on the manufacturer’s instruc-
tions. From each sample, cDNA was reversely transcribed using 
a Revert Aid First Strand cDNA Synthesis Kit (Thermo Scien-
tific, Fermentas, EP0451, and USA). Then, real-time quantita-
tive PCR amplification carried out on Faststart Universal SYBR 
Green Master (Roche, GER), using specific primers gene (GSP) 
(Table 1), at 95 °C for 10 min followed by 40 cycles of 95 °C for 
15 sec, 60˚C/ 30 sec at the annealing temperature of GSP, and 30 
sec at 72 °C. Target gene was normalizing with β –actin by used 
the 2-∆∆Ct method[33].

Table 1: Sequences of gene – specific primers.

Gene
Forward primer Reverse primer
(/5 ------ /3) (/5 ------ /3)

NF-κB CCTAGCTTTCTCT-
GAACTGCAAA

GGGTCAGAGGC-
CAATAGAGA

TNF-α GCATGATCCGCGAC-
GTGGAA

AGATCCATGCCGTTG-
GCCAG

IL-6 TCCTACCCCAACTTC-
CAATGCTC

TTGGATGGTCTTG-
GTCCTTAGCC

PPAR-α TCACACAATGCAATC-
CGTTT

GGCCTT-
GACCTTGTTCATGT

Caspase-8 CTGGGAAGGATCGAC-
GATTA

CATGTCCTGCATTTT-
GATGG

B-actin CATGGATGACGATATC-
GCT

CATGAGGTAGTCTGT-
CAGGT

Estimation of DNA damage by comet assay: DNA damage 
was estimated by alkaline single-cell gel electrophoresis (comet 
assay) based on the protocol recorded by Singh et al.[34]. Liver 
homogenates were scattered and immobilized in an agarose gel 
on microscope slides. The slides were placed in a lysis solution 
to lyse and disperse cell components; the DNA immobilized 
was leaved in the agarose. The DNA was denatured for a special 
period of time by immersing the slides in an alkaline solution. 
Strand breaks in the denatured cellular DNA resulted in super 
coil relaxation, the more breaks, the greater the degree of relax-
ation. Given a sufficient degree of relaxation the application of 
an electric field across the slides created a motive force by which 
the charged DNA may migrate through the surrounding agarose 
far from the immobilized main bulk of nuclear DNA. After elec-
trophoresis, the slides were rinsed in neutral buffer and the gel 
and its contents were fixed using ethanol. The DNA in the fixed 
slides was stained with a fluorescent DNA-specific stain as SY-
BER green, ethidium bromide, propidium iodide, 4, 6 diamidino 
– 2-phenylindole hydrochloride (DAPI), Gel Red and benxox-
azolium-4-quinolinum oxazole yellow homodimer (YOYO-1). 
Stained slides are checkup using a fluorescent microscope. The 
migration of DNA far from the nucleus, i.e. comet tail length, 
was measured by image analysis software which estimated dif-
ferent parameters of the comet, i.e. percentage of DNA in tail, 
tail length, tail moment = %DNA in tail X tail length[35].

Statistical analysis: The results were expressed as mean ± 
stander error using SPSS (13.0 software, 2009) program. The 
data were analyzed using one-way ANOVA to estimate the sta-
tistical significance of differences among groups[36]. Duncan’s 
test was used for making a numerous comparison among the 
groups for testing the inter-grouping homogeneity. Values were 
considered statistically significant when p < 0.05.

https://www.ommegaonline.org/
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Results

ALT, AST and ALP activities: A significant increase in serum ALT, AST and ALP activities caused in metalaxyl exposed rats com-
pared with normal group. Meanwhile, lycopene treatment to metalaxyl intoxicated male rats caused a significant decrease in elevat-
ed serum ALT, AST and ALP activities (Table 2).

Table 2: Effect of lycopene administration on serum ALT, AST and ALP activities in metalaxyl intoxicated male rats (U/L).
Animal groups ALT (U/L) AST(U/L)  ALP(U/L)

4 weeks 8 weeks 4 weeks 8 weeks 4 weeks     8 weeks
Group Ι:
Normal control 29.00 ± 1.53d 27.67 ± 3.18d 54.00 ± 0.58e 57.00 ± 1.53d 138.33 ± 3.84d 178.67 ± 6.98d

Group Π:
Metalaxyl group 56.33 ± 4.09a 59.33 ± 3.28a 117.67 ± 1.86a 121.00 ± 0.58a 301.33 ± 8.69a 317.67 ± 9.13a

Group III: 
Metalaxyl+ Lycopene  33.33 ± 1.86cd 32.67 ± 1.33cd 65.33 ± 1.20d 74.67 ± 2.03c 189.00 ± 5.51c 210.67 ± 3.18c

Data are presented as (Mean ± S.E). S.E = Standard error.
Mean values with different superscript letters in the same column are significantly different at (P ≤ 0.05).

NO, L-MDA, MPO, CAT, SOD contents: A significant increase in serum NO, liver L-MDA and MPO were observed in metalaxyl 
intoxicated rats after four and eight weeks. Meanwhile, a significant decrease in CAT activity was observed in metalaxyl intoxi-
cated rats after four weeks followed by a non-significant decrease after eight weeks of the experiment associated with a significant 
decrease in SOD activity compared to normal rats. Conversely, lycopene treatment to metalaxyl intoxicated male rats showed a 
significant reduction of NO, L-MDA and MPO contents. On the other hand, there was a significant increase in liver CAT and SOD 
activities were observed compared to metalaxyl exposed group (Table 3). 

Table 3: Effect of lycopene administration on serum NO level and liver tissue L-MDA, MPO, CAT and SOD activities in metalaxyl intoxicated 
male rats.
Animal 
groups NO (μmol/L) L-MDA (nmol/ g 

tissue)
MPO (unit/milligram 

of tissue) CAT (U/g.tissue) SOD (u/g.tissue)

4 weeks 8 weeks 4 weeks 8 weeks 4 weeks 8 weeks 4 weeks 8 weeks 4 weeks 8 weeks
Group Ι:
Normal 
control

19.36 ± 
0.69c

23.17 ± 
1.28b

4.08 ± 
0.01d

4.46 ± 
0.05c

0.05 ± 
0.001d

0.08 ± 
0.002d

1.14 ± 
0.02a

1.17 ± 
0.03bc

44.37 ± 
2.19bc

48.15 ± 
3.02b

Group Π:
Metalaxyl 
group

28.88 ± 
0.9a

34.31 ± 
1.42a

7.64 ± 
0.13a

8.37 ± 
0.07a

0.54 ± 
0.009a

0.69 ± 
0.010a

1.03 ± 
0.03b

1.07 ± 
0.01c

31.14 ± 
2.55d

37.56 ± 
2.03c

Group III: 
Metalaxyl + 
Lycopene

21.63 ± 
1.0bc

23.66 ± 
0.88b

4.87 ± 
0.09c

4.89 ± 
0.23c

0.15 ± 
0.003c

0.19 ± 
0.004c

1.25 ± 
0.05a

1.38 ± 
0.05ab

62.22 ± 
1.21a

69.09 ± 
5.01a

Data are presented as (Mean ± S.E).  S.E = Standard error.
Mean values with different superscript letters in the same column are significantly different at (P ≤ 0.05).

Table 4: Effect of lycopene on the relative expression of NF-κB, TNF-α, IL-6, PPAR-α and caspase-8 gene in liver of metalaxyl-intoxicated rats.

Animal groups
Fold change in 

NF-κB gene expression
Fold change in TNF-α 

gene expression
Fold change in IL-6 

gene expression

Fold change in 
PPAR-α gene 

expression

Fold change in 
Caspase-8 gene 

expression
4 weeks 8 weeks 4 weeks 8 weeks 4 weeks 8 weeks 4 weeks 8 weeks 4 weeks 8 weeks

Group Ι:
Normal con-
trol 

1.00 ±
0.09d

1.00 ±
0.08d

1.00 ±
0.08e

1.00 ±
0.10e

1.00 ±
0.07d

1.00 ±
0.08d

1.00 ±
0.07a

1.00 ±
0.08a

1.00 ±
0.08d

1.00 ±
0.07d

Group Π:
Metalaxyl 
group

13.00 ±
0.34a

17.75 ±
0.38a

10.13 ±
0.37a

12.82 ±
0.39a

10.63 ±
0.25a

15.45 ±
0.36a

0.42 ±
0.04c

0.32 ±
0.03c

5.43 ±
0.17a

9.32 ±
0.23a

Group III: 
Metalaxyl+
Lycopene

3.86 ±
0.15c

2.43 ±
0.13c

3.61 ±
0.17d

2.87 ±
0.16d

3.01 ±
0.16c

2.03 ±
0.14c

0.66 ±
0.05b

0.74 ±
0.06b

2.45 ±
0.12c

1.79 ±
0.11c

Data are presented as (Mean ± S.E). S.E = Standard error.
Mean values with different superscript letters in the same column are significantly different at (P ≤ 0.05).
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NF-κB, TNF-α, IL-6, PPAR-α and caspase-8 gene expres-
sion in liver: A significant up-regulation of NF-κB, TNF-α, 
IL-6 and caspase-8 genes expression level while a significant 
down-regulation of PPAR-α in livers of metalaxyl-intoxicated 
rats throughout of experiment compared to normal group. Con-
versely, lycopene treatment to metalaxyl intoxicated male rats 
showed a significant down-regulation of NF-κB, TNF-α, IL-6 
and caspase-8. On the other hand, there was a significant up-reg-
ulation in liver PPAR-α level when compared with metalaxyl 
exposed group (Table 4). 

DNA damage: A significant increase in DNA damage that was 
indicated by an increase in tail length and tail DNA% in liver tis-
sue was observed in metalaxyl-intoxicated rats compared to nor-
mal rats. Meanwhile, lycopene treatment significantly reduced 
DNA damage that was indicated by comet assay in metalaxyl 
intoxicated male rats (Figure 2).

Figure 2: Photomicrographs representation of liver DNA damage, 
using comet assay, in normal control (G1), and metalaxyl-intoxicated 
(G2) and lycopene (G3).

Histopathological examination: (Figure 3) showed various 
histopathological changes in the hepatic parenchyma of the ex-
amined rats. After 8 weeks livers of the rats treated with metal-
axyl showed extensive dilatation and congestion of central veins 
and hepatic blood sinusoids. Additionally, mild peri-vascular 
leukocytic cellular aggregations with activation of Von Kuep-
fer’s cells were also observed. The portal areas showed marked 
congestion of portal vein with hyperplastic proliferation of the 
lining epithelium of the bile ducts in association with formation 

of newly formed bile ductules. Also, variable amounts of fibrous 
tissue proliferation in portal areas and around bile ductules were 
also detected. Additionally, extensive thickening of the hepatic 
capsule in association with sub-capsular hemorrhage was also 
demonstrated. Diffuse, marked hydropic degeneration of the he-
patocytes characterized by swollen, pale, vacuolated cytoplasm 
with occasional pyknosis; rarely karyolysis or absence of nuclei 
of degenerated hepatocytes was noticed. In the centri-lobular 
zones of hepatic lobules, the hepatocytes showed degeneration 
characterized by enlargement of the cells by multiple variably 
sized discrete empty vacuoles that distend the cell cytoplasm 
and flattened, displaced nucleus to the periphery. Occasionally, 
coagulative necrosis of small groups of hepatocytes was char-
acterized by retention of hepatic cell outline and shrunken he-
patocytes with hyper eosinophilic cytoplasm and pyknotic nu-
clei in association with leukocytic cellular infiltrations mainly 
lymphocytes. Degree 3 of the severity microscopical lesions was 
observed in most treated animal’s liver. Accordingly, rats treated 
with metalaxyl had severe liver damage with a mean score of 3.

 
Figure 3: H&E stained sections of liver tissue taken from metalaxyl 
treated rat after 8-week (Group 2) showing (A) dilatation of central 
vein (cv) with peri-vascular leukocytic cellular aggregations (arrow). 
Notice also, activation of Von Kuepfer’s cells (zigzag arrow, x400), (B) 
mild peri-portal fibrosis with formation of newly formed bile ductules 
(arrow, x200), (C) extensive thickening of hepatic capsule (HC, arrow, 
x200), (D) marked diffuse hydropic degeneration of the hepatocytes 
with karyolysis or absence of nuclei (arrow, x400), (E) enlargement of 
hepatocytes by multiple variably sized discrete clear vacuoles that dis-
tend the cell cytoplasm with flattened, squeezed nucleus to the periph-
ery (arrow, x200), (F) focal area of coagulative necrosis of hepatocytes 
(arrow, x400).

https://www.ommegaonline.org/
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Figure 5: Immunohistochemical stained liver sections of (A) metal-
axyl treated after 8 weeks group revealed strong positive immunoreac-
tion for BAX in most hepatocytes (x200), (B) metalaxyl and lycopene 
showing very weak positive immunoreaction for BAX in the cytoplasm 
of some hepatocytes. (x200).

Discussion  

Pesticides compose a heterogeneous group of chemicals which 
are considered as one of the central factors involved in envi-
ronmental contamination of today’s world. These chemicals de-
signed for act as toxic to the pests are able to produce subversive 
influences on intoxicating non-target organisms, comprising 
animal and humans[37]. Metalaxyl is recorded to have danger-
ous effects on mammalian animals[38]. It induced apoptosis, bio-
chemical, BAX expression and histological changes in the liver 
of albino mice[8,24].
 The liver plays a major role in metabolism, and also 
has a number of functions in the body, involving plasma protein 
synthesis, glycogen storage and production of bile[39]. It is fore-
seeable not only to produce physiological functions but also to 
protect against the dangers of harmful chemicals and drugs[40]. 
Hepatotoxicity in most cases is because of free radical. Free rad-
icals created by the metabolism of toxicant substance initiate the 
toxicity cascade[41]. In present study, elevation in hepatic ALT, 
AST and ALP indices could be a secondary event following 
metalaxyl-induced lipid peroxidation in liver tissue. The dele-
terious effects of metalaxyl may be resulting from its ROS gen-
eration that leads oxidative stress on different organs. In agree-
ment with our results, several authors confirmed that oxidative 
stress, elevated lipid peroxidation, depletion of antioxidant de-
fenses and increased pro-inflammatory mediators’ production 
are entangled in the pathogenesis of pesticide-induced hepatic 
damage[42,43]. Lipid peroxidation and ROS generation of cell 
membranes leads an increase in membrane permeability, loss of 
membrane fluidity and alters in membrane potential all of which 
lead to enzymes leakage from the liver cells[44].  
 Nitric oxide is extremely reactive signaling molecule 
and it is remarkable regulator for cellular functions. Nitrative 
stress also plays a main role in inflammation. NO modifies DNA 
directly and inhibits the DNA repair enzymes[45]. The increase in 
NO level may be due to the up-regulation of TNF-α and other 
cytokines[46]. TNF-α synergistically acts with other cytokines to 
lead up-regulation of inducible NO synthase (iNOS) and elevat-
ed NO production in bronchial epithelial cells[47]. 
 Malondialdehyde, end point of lipid peroxidation pro-
cess, is defined as an oxidative degradation of polyunsaturated 
lipids[48]. According to Calviello, et al.[49] fungicides-induced in-
jury is closely associated with excess in lipid peroxidation and 
reduces in the antioxidant enzymes. Metalaxyl may be metabo-

 Meanwhile, the microscopical examination of liver ob-
tained from rats treated with metalaxyl and lycopene for 8 weeks 
revealed marked improvement in the hepatocellular architecture 
with more regular and less altered hepatocytes when compared 
to metalaxyl treated rats (Figure 4). The hepatic tissue renovated 
its normal histological structure in comparison to the negative 
control group. Most of the hepatic displayed a certain degree of 
recovery besides the portal area appeared normal and contained 
normal bile duct with congested portal vein only. Congestion of 
the hepatic blood vessels and blood sinusoids was the most com-
mon pathological alterations detected in the rats of this group 
with activation of Von Kuepfer’s cells. Accidently, the hepato-
cytes in the periphero-lobular zones of hepatic lobules showed 
hydropic degeneration characterized by swollen pale vacuolated 
cytoplasm with pyknotic nuclei; while the hepatocytes in the 
centro-lobular zone of hepatic lobules showed normal histologi-
cal appearance. Interestingly, the liver of rats obtained from this 
group appeared to be normal with a mean liver score 1, signifi-
cantly better scores than animals had metalaxyl only congestion 
of the hepatic blood vessels with mild hydropic degeneration 
was observed in most rats. 

Figure 4: H&E stained sections of liver tissue taken from metalaxyl 
and lycopene treated rat after 8 weeks (Group 3) showing normal he-
patocytes showing (A) normal hepatocytes (x200), (B) enlargement 
and activation of Von Kupffer’s cells (arrow). Notice also, bi-nucleated 
hepatocytes (zigzag arrow, x400), (C) periphero-lobular mild hydropic 
degeneration of the hepatocytes (arrow, x200), (D)showing focal area 
of hydropic degeneration of the hepatocytes characterized by swollen, 
pale, vacuolated cytoplasm with pyknotic nuclei (arrow, x400).

Immunohistochemistry: The microscopical evaluation of im-
munohistochemical stained hepatic sections for BAX revealed 
strong positive expression of BAX in most hepatocytes in meta-
laxyl induced rats. Meanwhile, in metalaxyl plus lycopene was 
detected weak positive immunoreaction for BAX in the cyto-
plasm of most hepatocytes (Figure 5). 
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lized to a reactive metabolite which may start a chain reaction 
with regard to lipid peroxidation and other tissue damaging in-
fluences[50]. The decrease in SOD activity in metalaxyl treated 
rats, which might be because of an excessive formation of su-
peroxide anions. These excrescent of superoxide anions might 
inhibit SOD and reduce its activity. In the absence of appropri-
ate SOD activity, superoxide anions are not dismuted into H2O2, 
which is the substrate for CAT enzyme, leading to decreasing in 
CAT activity[51]. 
 Myeloperoxidase activity elevated in metalaxyl ex-
posed rats. This result was in agreement with Abolaji et al.[52], 
who suggested that fungicide carbendazim exposure resulted 
in significant increase in MPO activity in the liver, spleen and 
kidney when compared with normal rats. In present study, the 
increase of serum NO levels and liver MPO activity caused 
stimulation of pro-inflammatory cytokine expression. MPO 
activates neutrophils and enhances their recruitment leading to 
an increased pro-inflammatory immune response[53,54] suggests 
that, as with other pesticides, metalaxyl may mediate its effect 
through the NF-κB pathway in the chronic phase of inflamma-
tion.
 Peroxisome proliferator activated receptor alpha in 
hepatocyte decreased in metalaxyl-exposed rats indicating that 
the fat burning machinery was compromised for causing hepatic 
steatosis and steatohepatitis. The decreased effectiveness of oxi-
dation systems is because of genetic, toxic factors and metabolic 
disorders. In animal models, inefficient PPARα sensing enables 
the oxidation of the in fluxed fatty acids and causes severe he-
patic steatosis development. Administration of PPARα agonists 
inhibits these processes and even reverses hepatic fibrosis in an-
imal models[55]. Similarly, Al-Eryani[56] reported that, intraper-
itoneal injections of dichlorodiphenyltrichloro-ethane (DDT) 
pesticide caused down-regulation of hepatic mRNA levels of 
PPAR-α target gene.
 DNA damage increase in this study may be because of 
the increase in NO, NF-κB, TNF-α levels and caspase-8 activity. 
Several reports have indicated that increase levels of NO induce 
apoptosis in various cell types. This influence seems to be me-
diated primarily through the effect of peroxynitrite on enhances 
mitochondrial permeability either directly, or by DNA damage 
with subsequent activation of the polyadenylate ribose synthase 
pathway[57-60]. This mitochondrial permeability transition results 
in liberate of cytochrome c from the mitochondria, which con-
stitutes a signal for apoptosis[61]. Also, several cytokines may ac-
tivate specific intracellular pathways, i.e., pro-apoptotic signals 
through caspase cascade[62,63]. Injured hepatocytes may liberate 
apoptotic bodies and activate Kupffer cells, and these activated 
cells mayenhance inflammatory and fibrogenic responses, lead-
ing to a vicious cycle of hepatic injury[64]. During inflammation, 
immune system cells caused an exacerbation of cellular respira-
tion due to increased oxygen consumption causing an increase 
in generate and accumulation of ROS at damage site[65]. The 
production of ROS, inflammatory mediators, depletion of anti-
oxidants and mitochondria damage is associated with morpho-
logical and functional alters that induce an acute inflammatory 
response leading to many clinical complications[63,64]. NF-κB 
binding sites have been identified in the promoter of TNF-α gene, 
which is commonly included in signal-induced programmed cell 
death. Many studies have clearly proved a pro-apoptotic role for 
NF - κB perhaps because it, along with activator protein 1, can 
induce Fas ligand (FasL) expression[66]. Ligation of FasL to Fas 
in the cell membrane triggers caspase-8 activation. Once activat-

ed, caspase-8 transduces a signal to effect or caspases, involving 
caspases 3, 6, and 7 and eventually causes hydrolysis of nuclear 
and cytosolic substrates[67]. Other studies reported that organo-
chlorines may induce apoptosis of sertoli cells by a FasL-linked 
pathway including enhance of the FasL expression, nuclear 
translocation of NF-κB and caspase 8 and 3 activation[68,69].
 The BAX protein is an important influence in cell apop-
tosis regulation. High Bax expression and formation of homo-or 
heterodimers with Bcl-2 may cause cell death[70]. The BAX pro-
tein undergoes changes in their structure after exposure to death 
signals and modifies the mitochondrial membrane structure 
leading the release of pro-apoptotic factors and cytochrome c[71]. 
In the present study, BAX appeared strong positive expression 
in most hepatocytes metalaxyl treated rats compared with nor-
mal rats. Apoptosis caused by metalaxyl has been suggested in 
hepatocytes cells of rats[72].
 The present study, lycopene-inhibited hepatic oxidative 
stress caused by metalaxyl. This effect may be due to its stim-
ulatory influence on the antioxidant parameters and its inhibi-
tory effect on lipid peroxidation, which caused stabilization of 
hepatocyte membrane and enhancement of liver synthetic func-
tion[73]. Bose and Agrawal[74] reported that, lycopene has been 
shown to have the highest antioxidant activity among the carot-
enoids regarding cell protection against hydrogen peroxide rad-
ical components, singlet-oxygen and nitrogen dioxide. During 
singlet-oxygen quenching, energy is transferred from singlet-ox-
ygen to the lycopene molecule, modifying it to the energy-rich 
triplet state. Trapping of other ROS, like OH-, NO2- or peroxyni-
trite, in the other hand, leads to oxidative breakdown of the lyco-
pene molecule. Thus, lycopene may protect against oxidation of 
DNA, lipids and proteins[75,76].
 In the present study, decreases L–MDA levelsin liver 
by lycopene may be originate from elevation of SOD and CAT 
activities and/or it act as a radical scavenger. Lycopene has 
function as an antioxidant by several mechanisms, and one of 
the best authenticated mechanisms is via strong singlet oxygen 
quencher[77]. Another mechanism for the antioxidant activity of 
lycopene is reaction with free radicals[78]. Likewise, lycopene 
may increase the antioxidant response element and thereby en-
hance the production of cellular enzymes as SOD and CAT that 
protect cells from ROS and other electrophilic molecules. For 
example, Ben-Dor et al.[79] suggested that, lycopene increases 
the Antioxidant Response Element (ARE) in human liver cancer 
(HepG2) and breast cancer (MCF-7) cell line through the nucle-
ar factor erythroid 2-related factor 2 (Nrf2) nuclear transcription 
pathway. Nrf2 is a main transcription factor regulating the an-
ti-oxidant genes such as SOD and CAT via binding to antiox-
idant response elements[80]. Additionally, lycopene reduces the 
oxidative stress and protects the kidney via decreasing MPO, 
L-MDA and nitrite levels[81]. Lycopene markedly decreased the 
increased MPO activity in liver indicating that suppression of 
neutrophil infiltration could be mechanism by which lycopene 
achieves its anti-inflammatory effect. The anti-inflammatory 
influence of lycopene as has been recorded in many other find-
ings[82,83]. Possible mechanisms for its anti-inflammatory re-
sponse may involve the inhibition of synthesis and liberate of 
pro-inflammatory cytokines and modulation of signal transduc-
tion pathways, involving that of the iNOS through its inhibitory 
effects on NF-κB[84].
 Lycopene-mediated up-regulation PPAR-α and 
PPAR-γ associated genes in mesenteric adipose tissue may have 
enhanced mesenteric adipose tissue fatty acid utilization, and 
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subsequently decreased lipid delivery from adipose tissue to the 
liver.  Lycopene modulations in PPAR-associated signaling were 
observed in the adrenal glands and liver of rodents in preceding 
studies[85,86]. In present study, the anti-inflammatory and protec-
tive effect of lycopene may be via the activation of PPAR-α. 
Also, the decrease in ALT and AST after lycopene treatment may 
be because of PPAR-α activation. Kersten et al.[87] and Edgar et 
al.[88] reported that, PPAR-α governs metabolism of amino acids 
by inhibiting expression of genes included in transamination of 
AST and ALT in mice.
 Our study showed that liver cell apoptosis, measured 
via caspase 8 and BAX protein expression levels, was inhibited 
by lycopene treatment implying an anti-apoptotic role for lyco-
pene and correlating with protection from metalaxyl-induced 
liver damage. Similarly, He et al.[89] stated that, caspase 3, 8,  9 
expression were markedly decreased following treatment with 
lycopene (10 mg/kg/day) for 4 weeks compared with myocardial 
infarction-induced mice group. Also, lycopene had preventive 
influence against oxidative damage to cell membranes and DNA 
strand, and that it significantly relieved histological alters caused 
by free radicals in the rat’s liver and in various cells[90,91]. Fur-
thermore, Bayomy et al.[92] reported that, the Bax activity was 
significantly reduced in rats received gentamicin with lycopene 
(4 mg/kg/day for 12 days) when compared with gentamicin-in-
duced renal oxidative stress group and result in apoptosis was 
inhibited. 

Conclusion

The results of our study suggest that lycopene supplementation 
has hepato-protective effects in metalaxyl-induced liver dam-
age. Lycopene can directly and rapidly scavenge free radicals 
and/or inhibit their formation, additionally; it can act by up-reg-
ulating endogenous antioxidant defenses. Lycopene protects the 
DNA of the cells from damage caused by free radicals. Results 
of the present study clearly indicate that feeding of antioxidant 
lycopene combats oxidative stress induced by metalaxyl in rats. 
Thus, lycopene may be effective in improving liver function, has 
a potential anti-inflammatory and antioxidant activities as well 
as diminishing liver injury complications.
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