Sedation for Intragastric Balloon Positioning and Removal: What Respiratory Management?

Levantesi Laura, Sicuranza Rossella, Canistro Gennaro, Sessa Flaminio, De Cosmo Germano

Fondazione Policlinico Universitario A. Gemelli IRCSS, Roma

*Corresponding author: Levantesi Laura, Fondazione Universitaria Policlinico Agostino Gemelli, Largo Agostino Gemelli 8, 00168 Roma (RM), Tel: 003906-3015, 4490;003906-3015.4507/ Fax 06-3551.0331; E-mail: laura.levantesi@policlinicogemelli.it

Introduction

Obesity has become an epidemic health problem worldwide[1]. Defined as a body mass index (BMI) greater than or equal to 30 kg/m², obesity is divided into class I (BMI of 30 – 34.9 kg/m²), class II or severe obesity (BMI of 35 – 39.9 kg/m²), and class III or morbid obesity (BMI greater than 40 kg/m²). Some surgical literature further breaks down class III obesity into super obese which represents those with BMI greater than or equal to 45 or 50 kg/m²[2].

In 2016, the World Health Organization (WHO) reported that 39% of adults aged 18 years and over were overweight (BMI > 25 kg/m²), and 13% were obese (BMI > 30 kg/m²)[3]. Obesity is a complex metabolic illness that increases the prevalence of various disease, including diabetes mellitus, hypertension, coronary heart disease, sleep apnea, stroke, gastro esophageal reflux disease, gall bladder disease, certain types of malignancy and many others[4]. Moreover, it is also a major avoidable health detriment. Current therapeutic approaches to obesity are lifestyle changes, pharmacologic treatment, and bariatric surgery. Weight-loss surgery provides the most sustained and effective therapeutic choice for obesity. Accessible methods include the adjustable gastric band, Roux-en-Y gastric bypass, and sleeve gastrectomy[5].

Regardless of its proven effectiveness, only 1% of obese patients eligible for the surgical procedure choose to undergo it[6]. The major issues with surgery are difficult accessibility, high costs, patient non-preference, and significant morbidity and mortality. Although its associated mortality has decreased considerably, the complication rate in the early and late stages of the bariatric procedure persist at 17% (95%CI: 11% - 23%)[7].

Therefore endoscopic bariatric treatment for obesity was recently introduced as minimally invasive and effective method. It includes intragastric balloons, gastroplasty techniques, aspiration therapy, and gastrointestinal bypass sleeves. Among them, the intragastric balloon (IB) has been the most frequently used in practice and the most studied for obesity treatment[8]. This device is placed in the stomach using esophagogastroduodenoscopy (EGD) a safe procedure that require sedation for reduce patient discomfort by inducing analgesia and amnesia and improves patient tolerance. The anesthesiology involvement in the care of patient who undergo IB placement by gastroscopy is recommended by many scientific societies worldwide[9] because of the morbid concomitant state of obesity that affects this patient. Different anesthesiological techniques are currently used for intragastric balloon positioning and removal.

Intragastric balloon treatment for obesity

The IB may offer a minimally invasive and valuable method for managing obesity and related conditions. It is used to achieve weight loss in obese people, generally those with a body mass index (BMI) >35 kg/m², or 30 kg/m² with certain comorbidities. IB treatment may play a different role in bariatric treatment based on the grade of obesity[10].

Early intervention and preemptive therapy for weight reduction can be performed in obese patients at risk for disease development, at high risk for all-cause mortality, and with a high cardiovascular risk profile[11]. The objective of preemptive treatment is to achieve modest weight reduction, and, therefore, the overall risk/benefit ratio could validate the standards for procedures with this indication.

The goal of IB treatment is to achieve weight reduction in severely obese people, generally those with a BMI > 35 kg/m² with or without comorbidities, and who could not achieve long-term weight loss with a weight-control regimen. In addition, IB therapy could be performed in patients with a BMI ≥ 40 kg/m², as a preparation for bariatric treatment or in patients with increased surgical risks. Obese patients who reject bariatric surgical procedures or who do not have an approach for surgery can also opt for it. IB therapy used as a primary therapy could induce weight reduction and improve obesity-related comorbidities with a level of safety and efficiency comparable to that of bariatric surgery[10].

Received date: October 3, 2018
Accepted date: November 1, 2018
Published date: November 9, 2018

Copy Rights: © 2018 Laura, L. This is an Open access article distributed under the terms of Creative Commons Attribution 4.0 International License.
For all these reasons the airway management in obese patients may be problematic. Obese patients present more often small oral cavity, small mouth opening, large neck circumference, impaired head and neck movements, possible short sternomental or thyromental distance, that are all predictors for difficult laryngoscopy also in non-obese patients. Even better several studies report a weak relationship between BMI alone and difficult intubation[29].

In the airway management in obese patients, particular attention must be placed on possible difficult mask ventilation (DMV), whose risk assessment is mandatory in the preanesthetic evaluation[30]. Age >55 years, BMI >26 kg/m², lack of teeth, presence of beard, history of snoring are considered independent risk factors for DMV, and the presence of two of these criteria indicate at best a DMV[31]. A large study of 14,369 patients confirms these DMV risk factors, except the lack of teeth, including Mallampati class III or IV. Furthermore this study provide limited mandibular protrusion as another independent DMV predictor[32].
Obesity is associated with decreased posterior airway space behind the base of the tongue, impaired airway patency during sleep and is a risk factor for OSA. Collapse of the pharynx with obstruction of upper airways occurs during anesthesia similarly to OSA[33]. In DMV patients the risk of difficult tracheal intubation (DTI) is also significantly increased[32,34]. In the international literature there are some controversies to demonstrate that obesity per se is associated with an increased risk of DTI[35,36]. The lack of consensus have some explanation: first the lack of universal definition of DTI, therefore difficult laryngoscopy, defined as a Cormack grade III or IV, is often used as a surrogate outcome of DTI[37]. Furthermore, the relationship between BMI and DTI risk may be not linear and there is no consensus about the cut-off values stratifying the risk related to BMI. In a large cohort study the authors concluded that BMI >35 kg/m² is a weak but statistically significant predictor of DTI and may be more appropriate than weight in multivariate models for DTI prediction[29]. DTI risk assessment should be performed in a careful manner and with some specificities in obese patients. Mallampati classification, thyromental distance, mouth opening measured by interincisive distance are recommended in DTI screening[38]. In obese patient high BMI and a neck circumference ≥ 43 cm should be specifically searched in preoperative airway assessment, indicating an increased DTI risk when they occur[39,40]. For the airway management in obese patients the preoxygenation is essential and strongly recommended from any guidelines. Optimization of preoxygenation allow to tolerate a longer period of apnea without oxygen desaturation and consequently increased the desaturation safety period[41,42]. The equipment for emergency airway management, including laryngeal mask and a fiberoptic bronchoscope, should be immediately available.

Anesthesiological management during intragastric balloon positioning and removal

All obese patients undergoing intragastric balloon positioning needa preliminary multidisciplinary evaluation: metabolic-endoctrineological, psychological, surgical and anesthesiological. Preliminary tests will be performed: hepatic and renal function, lipid profile and coagulation, an ECG and the chest X-ray[43] and an expert team of anesthesiologists in obesity should be involved[44]. The patients at high risk of peri-operative complications are those with central obesity and metabolic syndrome, rather than those with isolated extreme obesity[45]. Monitor should be: electrocardiography and heart rate, pulse oximetry, nasal capnography and non-invasive blood pressure during the whole procedure.

To perform IB positioning and removal the patient is placed in the left lateral position before sedation/anesthesia consisting in easily reversible drugs with fast onset and offset[46].

Propofol is the most commonly used induction agent for obese subjects because for is highly lipophilic it distributes rapidly from the plasma to peripheral tissues. Redistribution from the effect site into the plasma, and subsequently into peripheral tissues, accounts for its short duration of action after a single bolus dose. Cardiac output is a significant determinant of its peak plasma concentration. So its favorable pharmacokinetic profile take into account its popularity in using for sedation during endoscopic procedures: a rapid onset of action (30 - 40 seconds), the ability to achieve adequate sedation, and a short duration of effect (4 - 8 minutes) leading to rapid recovery. Propofol dosage for induction and maintenance of sedation/anaesthesia is based on lean body weight. However some form of depth of anesthesia monitoring is strongly recommended since more rapid redistribution of induction agents into the larger fat mass means that patients wake up more quickly than non-obese patients after a single bolus dose.

Changes in distribution volume in the obese are drug-specific, although lipophilic drugs will have a larger volume of distribution than hydrophilic one. Drug dosage can be calculated on total body weight, BMI, lean body mass (ideal body mass +20%) or ideal body weight. Expert recommendation is that lean or adjusted body weight are used as the scalars for calculating anesthetic drug dose in obese patients rather than total body weight[47].

Its safety and effectiveness during sedation in endoscopy has been demonstrated when compared to traditional agents such as benzodiazepines and opioids[48]. Wang et al revealed that it provided excellent sedation for patients undergoing gastrointestinal endoscopy procedures because it also shortened recovery and discharge periods, improved greater patient cooperation when compared to traditional sedation, and it is not associated with increased cardiopulmonary complications[49]. Various techniques can be used in propofol administration: intermittent bolus or continuous infusion method, but also patient-controlled sedation and target-controlled infusion (TCI). With this method, the desired concentration of drugs in plasma or at the effect site, can be achieved by an automatic administration system based on a pharmacokinetic computer calculation[50]. So, it results in a more precise control of drug concentration, avoiding peaks and troughs of propofol level. Hsu et al[51] used this administration system during colonoscopy and/or upper GI endoscopy and noted that propofol at low Ce (1.5e2.5 mg/mL) is effective and has fewer cardiovascular events. Propofol TCI sedation results excellent and reduces cardiovascular and respiratory depression compared to propofol intermittent bolus in midazolam/alfentanil regimen[52].

Respiratory changes in obese patients must be considered when a deep sedation or general anesthesia is chosen with a particular attention on screening patients for sleep-disordered breathing and difficult airway management. These patients often have undiagnosed OSA with an increased risk of post-procedural oxygen desaturation, respiratory failure and cardiac events. Upper airway collapsibility and impair arousal response, caused by sedation and opioids, should exacerbate OSA symptoms[53]. So faster desaturation and need for ventilator support are common in obese patients. Indeed a prospective study conducted by Wani et al. showed two times the risk of sedation related complications and need for airway maneuver for obese undergoing advanced endoscopic procedures[46]. Also during endoscopic retrograde cholangiopancreatography (ERCP), Berzin et al. prospectively assessed that higher BMI was strongly associated with adverse respiratory events[55]. Capnographic monitoring of respiratory activity results critical in reducing the incidence of oxygen desaturation through early identification of hypoventilation[56,57]. Anesthesiologists seldom applied non-invasive ventilation like bi-level positive airway pressure (BiPAP) in fear of aspiration...
and abdominal distention despite it was widely used to augment ventilation and CO₂ washout in the setting of respiratory failure. On the other hand, oxygen supplementation through nasal cannula is widely used before and during the procedure. An oxygen supply system with high humidified flows nasal cannula (HFNC) can be used to optimize the oxygenation levels both during the preliminary phase and during the whole procedure. HFNC use in procedural sedation results interesting for its ability to provide steady FiO₂ with high air flow rates and minimal interference with endoscopic devices inserted through the oral route. HFNC seems create positive end expiratory pressure (PEEP), by impeding expiratory flow, between 5 – 7.5 cm H₂O[58,59]. Indeed Lucangelo et al. proved that patients who received HFNC had higher ratio of arterial partial pressures of oxygen (PaO₂)/FiO₂ than those who received Venturi mask during bronchoscopy with conscious sedation[60]. Sago et al. utilized HFNC in dental procedures and it results that patients who received it had better PaO₂ compared to those who received oxygen at 5L/min through nasal cannula[61].

If hypopnea/apnea (defined as < 6 breaths per minute) occur during airway obstruction, chin lift, jaw thrust or insertion of a nasopharyngeal cannula will be necessary. This type of cannula represents a good device in case of collapse of upper airway as often occurs in these patients because it provides unobstructed spontaneous ventilation, end-tidal CO₂ monitoring, continuous positive airway pressure, and the possibility of assisted ventilation[62].

If hypoxemia (defined as a pulse oximetry of < 90% for any duration) persists despite these maneuvers, bag mask ventilation or endotracheal intubation should be considered. So the equipment for difficult intubation should be available and any difficult should be managed in accordance with guidelines.

In our experience of intragastric balloon positioning, which includes about 100 obese patients/year, we place the nasopharyngeal cannula before the procedure as soon as the patient sleep in presence of obesity grade II or more, in patients with positive STOP-BANG score and in case of anticipated difficulty in airway management.

High bronchoaspiration risk, especially during intragastric balloon removal, is due to presence of food residues in the stomach because of the balloon. Therefore aggressive mask ventilation should be avoided and rampsed position should be used wherever possible[63,64].

Adequate time and resources must be devoted to wake up of obese OSA patients in a monitored area. In the case of complications, the possibility of hospitalization in PACU must be provided.

Conclusion

There are an increased number of obese patients who are undergoing intragastric balloon positioning. Actualliesedation/anesthesia is becoming an integral component of this procedure to reduce the patient’s anxiety and discomfort and allow the operator to complete the procedure. To chooseappropriately the anesthesiological strategy, multiple factors need to be taken into an account. The obese patients have an increased risk of sedation-related complications for high prevalence of obstructive sleep apnea often undiagnosed. In addition, patients with morbid obesity can have restrictive lung disease, pulmonary hypertension and development of significant alveolar-to-arterial oxygen gradients. Obese patients are also at greater risk of developing cardiovascular complications. Data on the association of obesity and sedation related outcomes in obese patients undergoing sedation/anesthesia for intragastric balloon positioning and removal are limited. In addition, the optimal sedation regimen for achieving deep sedation in these high risk patients is unclear. Most society guidelines on sedation in this patient population are based on expert opinion so more population based studies are needed in order to plan carefully sedation for these high morbidity patients.

References

Sedation for Intragastric Balloon Positioning and Removal

PubMed | CrossRef | Others

Submit your manuscript to Ommega Publishers and we will help you at every step:

- We accept pre-submission inquiries
- Our selector tool helps you to find the most relevant journal
- We provide round the clock customer support
- Our submit manuscript tool is user-friendly
- We accept pre-submission inquiries
- We provide fast and fair peer review
- We offer a variety of article types, including Original Research, Review, and Case Report
- We provide comprehensive author resources, including a comprehensive author guide, a style guide, and a plagiarism detection service
- We ensure high-quality publication with professional editing, proofreading, and design services
- We offer fast and efficient online publication
- We provide open access options

Submit your manuscript at https://www.ommegaonline.org/submit-manuscript