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Introduction

 The Atlantic Meridian Transect programme (AMT[1], see Fig.1) has been 
conducting meridional transects of the whole Atlantic Ocean between latitudes 50ºN 
and 50ºS for 20 years (25 cruises). The Optical Plankton Recorder[2] has been used 
for sampling zooplankton from vertical net hauls at discrete stations, and for con-
tinuous surface underway measurements along 17 of these transects. The OPC is 
capable of producing rapid and robust near real-time estimates of the size-distrib-
uted biomass of mesozooplankton[3,4]. These electronic data are produced in a form 
permitting simple presentation as normalised biomass size spectra, from which it 
is possible to make estimates of secondary production process rates, for example 
Gomez et al[5]. In order to make such estimates, data on body size are insufficient, 
and some indication of taxonomic or functional grouping is necessary. No imagery 
is produced by the OPC, and therefore no taxonomic information is available. The 
development of the Line-scanning Zooplankton Analyser (LiZA) was a response to 
this need.
 To date very few detailed taxonomic analyses have been made of the AMT 
samples over the twenty-five years of its operation. The difficulty with large-scale 
zooplankton surveys such as AMT and, for example, the Continuous Plankton Re-
corder[6] survey is that human expertise is required to produce a taxonomic analysis 
of the specimens collected. The CPR analysts currently take approximately 3 months 

to return results from an individual CPR 
tow on a ship-of-opportunity. This can be 
a major bottleneck in the analysis of large 
ecological surveys, where an inevitable 
trade-off has to be made between scale of 
survey and analysis capacity. Identifica-
tion of specimens can be a subtle process, 
with differences between species revealed 
only by dissection of the specimen. 
 In routine analysis of plankton 
samples from net hauls the larger speci-
mens such as Decapods, fish larvae, Eu-
phausiids and Chaetognaths are counted at 
low magnification. To identify the smaller 
plankton in the sample, it is sub-sampled 
using a Stempel pipette or other form of 
sample-splitter. Usually, the analyst at-
tempts to obtain about 200-250 specimens 
per sub-sample for microscopic identifi-
cation. This constitutes sparse sampling, 
since a net-haul could easily comprise 
over 12,000 specimens. By contrast, this 
study sets out to identify everything in a 
sample, but uses computer vision tech-
niques to reduce the burden on the human 
expert. By doing this, the occurrences 
of rare specimens in a sample are noted 
and the respective images retained for 
future analysis, something both physical 
sub-sampling of the sample and automat-
ed machine analysis generally ignore.
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Abstract
 The development and testing of a new imaging and classification system for 
mesozooplankton sampling over very large spatial and temporal scales is reported. 
The system has been evaluated on the Atlantic Meridional Transect (AMT), acquir-
ing nearly one million images of planktonic particles over a transect of 13,500 km. 
These images have been acquired at a flow rate of 12.5 L per minute, in near-con-
tinuous underway mode from the ships seawater supply and in discrete mode using 
integrated vertical net haul samples. The aim of this development is to produce an 
instrument capable of delivering autonomously acquired and processed data on the 
biomass and taxonomic distribution of mesozooplankton over ocean-basin scales, in 
or near real-time, so that data are immediately available without the need for signif-
icant amounts of post-cruise processing and analysis. The hardware and image ac-
quisition and processing software system implemented to support this development, 
together with some preliminary results from AMT21, are described. The images ac-
quired during this Atlantic cruise comprise microplankton, mesoplankton, fish larvae 
and sampling artefacts (air bubbles, detritus, etc.), and were classified to one of 7 
pre-defined taxonomic categories with 67% success.
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Figure 1: (a) North Atlantic AMT21 track, (b) South Atlantic track 
(Map courtesy of Google Maps)

 In response to this bottleneck over the last 20 years 
instrument systems have been developed for the automated 
analysis and taxonomic classification of images of zooplankton 
acquired in situ. In this context large scale surveys have been 
completed using the Shadowed Image Particle Profiling Eval-
uation Recorder[7] (SIPPER), In situ Ichthyoplankton Imaging 
System[8] (ISIIS), FlowCAM[9], Underwater Vision Profiler[10]

(UVP), Video Plankton Recorder[11] (VPR) and ZOOVIS[12]. The 
Harmful Algal Bloom-buoy (HAB-buoy) system[13] was devel-
oped and successfully deployed at three sites in European waters 
for continuous long-term monitoring of harmful microplankton 
species. Images of specimens thus acquired can be pattern anal-
ysed and identified using ZooProcess[14], ZooPhytoImage[15] and 
Plankton Analyser[16], which are all open-source tools kits. 
 There are several potential difficulties associated with 
in situ imaging systems. Data acquisition and processing are 
computationally intensive tasks, and such systems often require 
that the process of collecting images and samples be separated 
from the analysis process. There is a fundamental trade-off re-
quired between (a) the need to maximise sampling volume in 
order to produce a statistically significant sample over an area 
small enough to resolve temporal and spatial variability and 
(b) the image resolution and computer processing demands of 
such large volume imaging. Few automated systems are able to 
analyse the entire water sample that passes through the sample 
chamber (see discussion of flow cell, below). 
 The LiZA system was developed from HAB-buoy, 
and together with the Plankton Image Analyser (PIA) software 
system (the LiZA/PIA system) has been designed and built in 
Plymouth to address these difficulties. The system, along with 
the OPC, is currently capable of producing estimates of size-dis-
tributed mesozooplankton biomass together with taxonomic 
or functional grouping. The categories for functional grouping 
were selected to permit the derivation of secondary production 
in the future. 

Results

 The LiZA system was run on AMT21 from 2nd Octo-
ber 2011 to 8th November 2011. For this first deployment of the 
system on AMT21 the automated classifier was not run in par-
allel with data acquisition. This was partly due to the fact that 
no training set could be derived until sufficient samples were 
gathered from all regions of the transect. It was preferred for the 
initial testing to run the classifier interactively post cruise with 
human expert intervention in order to tune and assess its perfor-

mance. Once a reliable training set has been assembled and re-
fined by this process, it is intended to run the classifier in parallel 
with the acquisition system in order to fulfil the aim of a near 
real-time sampling and analysis system, with results available 
immediately following the end of the cruise. The expert will still 
be ‘in the loop’, to ensure that the rarer specimens are correctly 
binned and to tidy up the categories. 

System Calibration
 The LiZA system is used in series with the OPC, allow-
ing inter-calibration of the two instruments in terms of particle 
counts and size distribution. At the beginning of each deploy-
ment, a calibration sample was run through both instruments 
(see Fig. 2), consisting of a number of calibration beads of 500 
μm in diameter (Duke Scientific 4000 series, 500 µm ±10 µm, σ 
= 25.1 µm). Data acquired during sampling can also be directly 
compared as histograms in the same way.

Figure 2: Inter-calibration of OPC and LiZA systems, using 500μm 
calibration beads.

 Figure 3 shows a sample of zooplankton imagery ac-
quired during AMT21, illustrating the typical image quality at-
tainable. The variations in image intensity are due to specimen 
density differences.

Figure 3: Montage of typical mesozooplankton images obtained by 
LiZA system from in-flow samples along AMT21 transect. Scale bar 
= 500μm.

Classifier performance
 The training phase of the study using Random Forest 
classifier[17] revealed a 15% error. Test sets assessed subsequent 
to the training phase reveals error rates ranging from less than 
10% to 31% with a 10-fold cross-validation. These training/test 
samples provided 121,003 images, containing mesozooplank-
ton, phytoplankton, detritus and sampling artefacts such as air 
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bubbles. Once trained, the PIA machine sort was assessed using 
samples (both net hauls and in-flow) drawn from across the tran-
sect. The average sensitivity was 0.69 and precision was 0.79.

Table 1: PIA Classification % success

Key: Art – artefacts; Blu – blurred; Cha – Chaetognatha; Cos – Coscinodiscus 
spp.; Det – detritus; Egg – eggs; Ost – Ostracoda; Nau – nauplii; Lco – large 
copepods; Sca – small calanoids; Mic – Microsetella norvegica; Oit – Oithona 
spp.; Tri – Trichodesmium; Unc – unclassified; total N=121003

 It is clear that the PIA classifier suffers from the expect-
ed under-reporting of rare classes, revealing frequent mis-label-
ling of crustacean eggs, Ostracoda and Chaetognaths. In addi-
tion there is frequent confusion between artefacts, blurred and 
unclassified when compared to the expert validated labels. The 
categorisation performance was low when the Random Forest 
classifier was asked to separate small copepoda, Oithona spp. 
and Microsetella norvegica, only correctly labelling the species 
specific categorisations 7.6% and 43.2% correctly for Oithona 
and Microsetella respectively. It is thought these effects are due 
in part to contradictions in the validated data set labelling, where 
the boundary between artefact and detritus, for example, is not 
consistently clear in the mind of the expert validator. Over a pe-
riod of labelling the reference datasets, their ‘working defini-
tion’ of what constitutes a valid artefact, or blurred item or small 
copepod may vary. Given the size of the validated set of sam-
ples (~1 million particle images) this is not surprising. Merging 
Small copepoda, nauplii, Oithona spp and Microsetella norvegi-
ca raises Small copepoda categorisation performance to 73%. 
Confusions between artefact and blurred and detritus results can 
be seen from Fig. 4. 
 The quality of plankton images collected in flow is good 
to poor: examples are shown for a variety of groups in Figs. 3, 4, 
5, 6, 7, 10, 12, 15 and 18. Two additional categories were added, 
artefacts for air bubbles (21,728 images) and blurred that was 
required to cope with the poor image quality of 11,367 particles 
from the total of 262,972 particles in the in-flow sample of 434 
cubic metres of oceanic water. This quality helped to define the 
selected categories. A trade-off was made between optical cell 
design and optical depth of field. This resulted in 4% of parti-
cle images being out of focus. This was deemed acceptable to 
ensure a reasonable water flow rate through the cell. However, 
it caused a dilemma in expert validation, since the expert some-
times made guesses as to the identity of the blurred specimen. 
The impact of this is discussed below.
 Initially, Crustacea was selected as one of the main cat-
egories. Examination of the images in the training set showed 
that Copepoda dominated and Decapoda, Euphausiid etc. were 
far less numerous. The decision was then made to sort the Co-
pepoda into large (>1mm) and small (<1mm) and then the small 
copepod in Calanoida, Cyclopoida and Harpacticoida. Again the 

quality of imagery enabled visual manual separation into genera 
and species such as Oithona spp. and Microsetella norvegica.  
Each sample took between 15 minutes and three hours to man-
ually validate, depending upon sample size (ranging from 6,000 
to 80,000 images). This resulted in categorisations that had the 
rarer class types removed from the abundant classes, for exam-
ple eggs and Ostracoda from air bubbles and detritus. The cat-
egory “small air bubbles” appears to be a catch all for all small 
roughly circular particles as can be seen in Fig.4 (g-h). 

Figure 4. Examples of 2011.10.02.2018 test sample sort results. Each 
group of four specimen images (a, c, e and g) are annotated with the 
class probability. Groups b, d, f and h have individual probability anno-
tations to highlight the uncertainty of label attribution.

 Examples of the dilemma faced during interpretation of 
Random Forest results are shown in Fig. 5. Where the machine 
responses to the patterns presented were weak, several possi-
ble classifications were likely. An example from the unclassified 
category (Fig. 5a) shows that other possible class labels could 
be given to some specimens, where the classifier response was 
similar between two classes. Fig.5b shows a specimen labelled 
as blurred by the expert, and detritus by PIA. Fig. 5c shows the 
Random Forest Classifier taking the last label of three even prob-
abilities and records a label of ‘unclassified’ yet equally probable 
was the correct label of ‘nauplii’ and an incorrect label of ‘small 
air bubble’. Fig.5d shows a correct label of small copepod be-
ing ascribed to the specimen, yet recorded incorrectly since the 
expert labelled this specimen to small calanoid. These labelling 
issues need resolving in a consistent manner, when equi-proba-
ble labels are presented by the classifier.
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(a) Pia1.2011-10-02.2018+N1475.tif
Expert validated this as small_airbubble.
PIA labelled as unclassified (detritus p=0.24,  
small_airbubble p=0.32, unclassified p=0.32)

(b) Pia1.2011-10-02.2018+N5989.tif
Expert validated this as blurred.
PIA labelled as detritus (detritus p=0.28, Mi-
crosetella norvegica p=0.24 small_copepod 
p=0.22)

(c) Pia1.2011-10-02.2018+N4109.tif
Expert validated this as nauplii.
PIA labelled it as unclassified (detritus p=0.22, 
nauplii p=0.24, small_airbubble p=0.24, un-
classified p=0.24)

(d) Pia1.2011-10-02.2018+N4722.tif
Expert validated this as small_calanoid cope-
pod.
PIA labelled as small_copepod (large copepod 
p=0.16, Oithona p=0.18, small_copepod p=0.3, 
unclassified p=0.18) 

note: scale bar is 0.5mm

Figure 5:  detailed classification data for four specimens

 An issue with image segmentation caused many Cha-
etognaths to be cut into several pieces where illumination stria-
tion effects appeared to separate them. The expert validator was 
able to recognise each as being characteristic of Chaetognatha, 
but PIA could not perform as well and mostly misidentified 
these broken up pieces as detritus. Fig. 6 gives some examples 
of the validator’s set of Chaetognaths from sample Pia1.2011-
10-02.2018. Of note is specimen N2117.tif from the sample that 
returned similar probabilities for two of the three label catego-
ries (Chaetognatha p=0.24, Large Copepoda p=0.34 and Unclas-
sified p=0.34).

Figure 6: Chaetognatha labelling examples. Note the expert validator 
counted 45 partial or full specimens, whereas PIA only discovered 5, 
which are all shown.

 Images of copepoda are shown in Fig. 7. There are many 
published works (for example Gallienne and Robins[3]) suggest-
ing that Oithona spp. may be the commonest ‘small’ copepod in 
the ocean, yet in this 13,500 km AMT transect, sampled from 
a depth of 6m, the harpacticoid Microsetella norvegica (length 
0.33-0.53mm, Fig. 8) is more abundant in 28 of the 38 sampling 
transects, especially transects 7-21, 31oN to 4oS (Fig. 1). Oithona 
spp. were more abundant in the 2 most northern samples and in 
the 7 most southern (32o to 46oS) of the AMT transect (Fig.9).

Figure 7: Images of copepoda. Scale bar 0.5 mm

Figure 8: Large Copepoda (>1mm) and small copepoda (<1mm) per m3

Figure 9: Calanoida, Cyclopoida (Oithona spp.) & Harpacticoida (Mi-
crosetella norvegica) distribution across the Atlantic Ocean in AM21. 
Numbers per m3
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 The small copepods (<1mm) were present at an order 
of magnitude greater than the large (>1mm) copepods (Fig. 8) 
but the small calanoid copepods did include many other spe-
cies of cyclopoid and harpacticoid (smaller Oncaea spp. Copilia 
spp. Corycaeus spp.), which were not discriminated in this study 
(Fig. 10). Other harpacticoid and the cyclopoid contribution to 
the small copepod category increased in the southern part of the 
AMT transect.

Figure 10: Selected images of Harpacticoida (a) (Microsetella norvegi-
ca) and (b) (Macrosetella gracilis). Scale bars: 0.5mm.

 Ostracods were present in all transects along AMT21 
(see Fig. 11), reaching a maximum in transect 38 (44o – 46oS) of 
173 individuals per sample (9 cubic metres). They were rare in 
12 of the 38 transects especially samples 17 -21(7o N to 7o S). 
The species were imaged very well with the line scan camera as 
seen in Fig.12; the majority observed were of the genus Con-
choecia spp. The variation in grey-level is due to the differences 
in optical density of the specimens.

Figure 11: Ostracoda numbers per m3

Figure 12: images of Ostracods. Scale bar 0.5mm.

 Trichodesmium spp. (0.5-4 mm) is a genus of filamen-
tous marine colonial cyanobacteria. It is the most dominant 
diazotroph in nutrient poor tropical and subtropical ocean wa-
ters[18] and fixes atmospheric nitrogen into ammonium. Beside 
single filaments, there seems to be 2 colony morphologies in our 
samples; they are attributed to T. thiebautii and T. erythraeum 
(Fig. 13). 

Figure 13: Image of (a) T. thiebautii (top row) and (b) T. erythraeum 
(bottom row) from sample 2011-10-14.0638 (23oN to 21oN) and 2011-
11-05.0951 (42oN to 44oS). Scale bar 0.5 mm.

Figure 14: Trichodesmium spp. per m3.

 The report by Tyrell et al[19] on analysis of AMT tran-
sects (1995-1999) showed that Trichodesmium spp. were most 
abundant between 0o and 15oN but were completely absent be-
tween 5o and 30oS. These findings were based largely upon anal-
ysis of 50-100 ml samples but our samples ranged from analysis 
of 2.4 to 19.4 m3, which is some 48,000 to 200,000 times great-
er water volume analysed. This is perhaps why Trichodesmium 
spp. was observed throughout the whole of the north and South 
Atlantic Ocean on AMT 21. Our samples (Fig. 16) were taken 
from 6 m depth although Capone et al[20] and Letelier and Karl[21]

suggest a more representative depth to sample Trichodesmium is 
15 m. This suggests that this study may be underestimating the 
abundance.  The major region of abundance of Trichodesmium 
filaments and colonies occurred between transects 9 to 12 (27o 
N 36o E to 18o N 39o E) and reached concentrations of over 5000 
filaments and colonies per cubic metre (Fig. 14). This represents 
over 80,000 Trichodesmium imaged and counted in one transect 
sample. This region is further north than reported by Tyrell et 
al[19] as the area of maximum occurrence of Trichodesmium on 
the AMT track. Trichodesmium were also abundant in transect 
37 (1500 filaments and colonies m3) between 42o and 44oS. The 
region between 5o and 17oS is of low abundance in AMT21 while 
Tyrell et al[19] considered it absent from 5o to 30oS. From the 
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data collected by LiZA, sampling much larger volumes, it can be 
concluded that Trichodesmium is present throughout the whole 
of the North and South Atlantic Ocean between 48oN and 46oS 
and is probably ubiquitous throughout the oligotrophic oceans of 
the world.

Figure 15: Selected images of copepod nauplii from sample 2011-11-
05.0630 (44°S to 46°S). Scale bar: 0.5mm

 Crustacea eggs and nauplii distributions (Fig.15) can 
be expected to vary with seasonal cycles along the AMT tran-
sect. Fig.16 shows varying, yet low, densities of both.

Figure 16: AMT21 distribution of eggs, nauplii and unclassified cate-
gories per m3

 Detritus was distributed across the entire transect and 
followed a similar distribution to the ‘blurred’ category (Fig. 17). 
The Chaetognaths had their maximum occurrence in samples 1 
(48oN – 44oN) at 46 individuals (19m-3) and 4 (38oN – 36oN) 
at 93 individuals (11 m-3) although occurring in low numbers 
throughout the AMT transect north to south. 

Figure 17: Distribution of blurred, Chaetognatha and detritus images 
across the cruise transect AMT21, per m3

 Although this study was aimed at categorizing meso-
zooplankton along the AMT21 transect, it can be seen from the 
‘unclassified’ category in Fig. 18 that the images are from plank-
ton sizes below the normally-accepted lower size threshold of 
0.2 mm, and encompasses protozoa to juvenile fish. This catego-
ry contained phytoplankton (diatoms, dinoflagelates), protozoa 
(Acantharia, Radiolaria, Foraminifera), copepod eggs, nauplii, 
other mesozooplankton (Gastropoda-Creseis spp.), Crustacea 
(eg. Decapoda) and fish eggs and larvae. 

Discussion

 What is revealed by these data is a geographical dis-
tribution that broadly follows the results of previous studies of 
the Atlantic Ocean, but has some interesting detail, which is 
highlighted. The accuracy of the system will be improved in fol-
low-up sampling and analysis on subsequent cruises, as training 
data sets are expanded. The acquisition and classifier systems 
will be run concurrently, to achieve the aim of returning from 
research cruises such as AMT with fully processed and analysed 
samples.
 Compared with previous biological studies of the At-
lantic Ocean, which were primarily net or bottle sampling, the 
near-continuous sampling of large volumes of water using LiZA, 
over approx. 13,500 km of ocean, indicates that some ‘presence 
or absence’ maps of species in the ocean may result from insuffi-
cient sampling. This appears to be the case with Trichodesmium 
spp. in the Atlantic Ocean, when analysed in 434 cubic metres of 
water.

Figure 18: Images of machine-unclassified specimens. Bottom row are 
scaled 1:1, the remainder x0.5. Scale bars 0.5mm.

 A potential limitation of this study is that training 
specimens were taken from only three samples, one from North 
Atlantic, one from Tropical Atlantic and one South Atlantic, to 
construct the training dataset. These were then used to identify 
specimens from the entire transect: North Atlantic, tropical and 
South Atlantic Ocean. However, the PIA classifier returns rea-
sonable results, although it can misrepresent rare taxa. Since the 
system is being assessed as a “Ferrybox” instrument it is import-
ant that ships pump induced air bubbles are handled efficiently. 
PIA is able to reject about 86% of these artefacts present in the 
water column and hence in the image sets.
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 In addition, there is evidence that the expert is being in-
consistent in decision-making between blurred and identifiable 
targets on occasions. Examples of this occur with artefacts and 
with small copepod in relation to the amount of blurring that 
is acceptable to the expert in making a correct identification. It 
appears that mental thresholds applied to one sample may be 
different to those applied to another sample. In a recent study 
of this phenomenon by Culverhouse[22] found that plankton an-
alysts were not consistent in their taxon labelling over a two-
day period. When used as training data for machine classifiers, 
this human categorical labelling inconsistency causes confusion 
between such classes. A solution to this problem, given that per-
formance optimisation of the classifier is on-going, is to per-
form a final rapid validation of the machine-classified results by 
an expert. Following this validation step the data appears to be 
consistent in the chosen categories to better than 90%. Future 
cruises will use a training set developed from and representative 
of the whole of the accumulated data set. 

Conclusion

 The LiZA/PIA system can process and analyse 600-
1200 litres of water per hour continuously underway and discrete 
net samples in a few minutes, to a specimen resolution of 100 
micron. Image quality is generally good with less than 5% being 
blurred, and the PIA classifier is able to classify zooplankton 
images thus derived to one of 7 pre-defined taxonomic classes 
with an average of 67% success, which is good given the diver-
sity of morphologies in each category. Results compare favour-
ably with earlier published data for copepod abundance in the 
Atlantic Ocean. The effort required to complete the AMT21 data 
analysis to the level reported here is tractable and allows eco-
logical data to be extracted from net hauls and in-flow pumping 
within a few days of the specimen images being available. This 
is more than a factor of ten faster than is currently possible using 
purely human effort. Given the compilation of a comprehensive 
training set for future cruises, analyses could be completed in 
real-time. The performance of the system is comparable to oth-
er semi-automatic imaging and identification instruments, but is 
the first to complete an ocean-basin scale study. 
 The LiZa imager captured over one million particles 
on the AMT21 cruise track in under-way samples and net hauls, 
of which 262,972 specimens were imaged underway. PIA pro-
cessed and labelled all these images. The expert validator viewed 
all images and made a rapid re-sort to move incorrectly labelled 
particles to the correct bins. This took between 10 minutes and 
three hours to re-sort up to 120,000 specimens in a sample. It 
guarantees the accuracy of the labelling to an estimated 90% or 
better. It also ensures the rare taxa are correctly labelled, thanks 
to the pop-out phenomenon of human visual perception[23] in 
sorted samples. There was no sub-sampling of the samples at all. 
Everything in the 434 cubic metres of water has been coarsely 
sorted into seven categories. Further work will allow finer spe-
cies-level discriminations of the data. The authors suggest that 
this is a reasonable way forward to gather detailed information at 
ocean basin scale using machine-assisted analysis. Until image 
classification can cope with rare specimen identification, with 
one-shot learning, this method is likely to be the best way for-
ward for some time.

Methods: Scientific & Technological Issues
 Video data is notoriously difficult to process by com-
puter image analysis. Images that human experts find straight 
forward to classify can be intractable to automated image pro-
cessing and classification techniques.
 The LiZA in-flow system is a real-time high-speed in-
strument, developed from the HAB-buoy technology, capable of 
resolving to 100 microns (with 10 micron pixels) with flow rates 
up to twenty litres per minute. Samples are taken continuously 
for up to 22.5 hours per day from seawater drawn from the ships 
normal seawater supply at 6m below the surface. Daily discrete 
samples from vertically integrated net hauls are also processed 
by the LiZA system. Particle images are isolated from the water 
flow through the system in real-time and stored to a hard drive. 
These are immediately available for automated classification 
using the PIA classifier for near real-time image analysis and 
identification. Close to one million particles were acquired on 
AMT21 comprising microplankton, mesoplankton, fish larvae 
and sampling artefacts (air bubbles, detritus, etc. at a flow rate of 
12.5±0.49 litres per minute). 
 An issue of importance is the property of detritus to 
take on very diverse morphology - some being real body parts, 
or having the appearance of living organisms. This causes mis-
takes to be made, producing ‘false positives’ by the classifier. 
The magnitude of the problem depends on the amount of detritus 
in the water sample, since no filtering is done when operating in 
situ, unlike net sampling where it is normal to use a 200-micron 
mesh to filter out microplankton and small detritus. The higher 
the abundance of detritus the more likely it is to appear in other 
category bins. It is for this reason that we adopt the Zooscan 
semi-automatic methodology by Gorsky et al[14] for sample pro-
cessing. This is discussed in more detail in the methods section 
- it allows an operator to intervene post-processing to remove 
obvious mistakes in machine identification. The semi-automatic 
methodology also allows the rarer taxa to be correctly identified 
by the human expert, rather than being misclassified by the ma-
chine.

System Design - Imaging System Hardware

Camera
 The camera used is a Basler Sprint sp2048-70 km. This 
is a monochrome line-scan camera with 2048 pixels per line and 
a line-scanning rate of 70 kHz. Camera line rate and number of 
pixels, together with the flow cell dimensions and the magnifica-
tion of the imaging system, determine the volume sampling rate 
and the resolution of the system in terms of smallest identifiable 
picture element (pixel). These last two parameters are conflict-
ing (see discussion of flow cell, below) and so their chosen val-
ues must be a compromise. See Fig. 19.
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Figure 19: LiZa on board cruise AMT21, showing optics (central) and 
pumped water supply hoses (right).

Optics
 The system uses an Infinity HDF high depth of field 
lens. The requirement to maximise the depth of field in order 
that objects are in focus across the full depth of the flow cell 
conflicts with the desire to maximise the resolution of the sys-
tem and volume sampling rate. Again, a compromise has to be 
reached. In the LiZA system a working distance of 135 mm from 
the centre of the flow cell to the front of the lens assembly gives 
the required magnification of 1:1 for a maximum field of view 
in the object plane of 20 mm, a 10 μm resolution and a depth of 
field of around 16 mm.

Illumination
 The LiZA imaging system flow cell is back-illuminat-
ed by a high-power light emitting diode (LED), strobe from the 
camera line strobe and with a duty cycle determined by a de-
lay timer which drives the LED in pulsed mode. The LED is a 
Luxeon Rebel Tri-Star (MR-D0040-20T) emitting red light (626 
nm) at an angle of 18°. The LED assembly consists of three such 
LEDs, mounted in series on a small PCB/heat sink and giving an 
output of 255 lm at a continuous operating current of 700 mA.
 A short duty cycle, somewhat less than the camera line 
period, is required to prevent unwanted motion blurring as the 
object passes the field of view at up to 0.7 m sec-1. This require-
ment conflicts with the need to maximise the amount of light 
available during this exposure time.  The line period for the cam-
era at a line rate of 70 kHz is 14.24 μS, and the ‘on period’ for the 
LED is around 3μS, giving a duty cycle of approximately 20%. 
3 μS represents object movement of less than half of one pixel at 
the proposed flow rate, so that blurring is minimised. At a 20% 
duty cycle the operating current can safely be increased by up 
to 3x without damage to the LED, giving adequate illumination 
over the reduced exposure period. A collimating lens in front of 
the LED helps to ensure that the maximum illumination reaches 
the object field within the flow cell, and to maintain constant 
illumination across the depth of the flow cell. It has been found 
that operating the LED in this mode using a mean current of 
around 1500 mA gives images of good quality and contrast with-
out significantly shortening LED life. Typical life expectancy for 
the LED in this pulsed mode, used continuously day and night 
has been found to be greater than 60 days.

Flow Cell
 The layout of the flow cell is shown in cross-section 
in Fig. 20, below. This cell is machined from a piece of solid 
brass round stock of 36 mm diameter. A hole is bored through 
the centre having a diameter of 25 mm. Optical windows 20 mm 
square and 3mm thick are set into flat recesses machined in the 
outside of the cell, so that their inner faces are parallel and 18.67 
mm apart. The effective width of the resulting imaged area (V) is 
16.7 mm. This means that in fact only a proportion of the water 
flowing through the system is sampled (V/[V+2D] = 0.75), and 
a corresponding correction factor must be applied to values for 
biomass concentration. It is proposed to replace the tubular flow 
cell with one having a rectangular cross-section to correct this, 
in order to achieve the potential of the system to sample all the 
water passing through the system.
 The cross-sectional area of the imaged volume V is 
312 mm2. At a measured flow rate of 17.5 L/min, the linear flow 
through the 25 mm diameter tube is 0.59 m/sec. This linear flow 
increases in the reduced volume (V+2D = 418 mm2) to 0.7 m/
sec. At a line scan rate of 70 kHz this yields an along flow reso-
lution of 9.98 μm. Resolution across the flow is determined by 
the width of the imaged area (16.7 mm) divided by the number 
of pixels active across this area (1682) = 9.93 μm. Pixels in the 
object plane are therefore square. At other flow rates, the im-
age will be distorted along the direction of flow (compressed 
or stretched). This effect was corrected at the image processing 
stage by assigning the correct values, based on flow rate used, to 
each dimension in the algorithm operating on the image.

Figure 20: Cross-section of flow cell

System Throughput
 The line scanning rate and the dimensions of the flow 
cell as determined above give an optimal volume sampling rate 
of 17.5 L/min, or a cubic metre of sea water in just over 57 min-
utes. While on-board ship the pumped seawater source could 
only provide 12.5L/min reliably. Generally, when in continu-
ous sampling mode on ocean cruises such as AMT, we integrate 
OPC and LiZA data every hour. This gives a minimum of one 
cubic metre sampled, yielding sufficient numbers to produce a 
statistically significant size distribution up to ESD = 4mm (at 
least 1 present on average; Gallienne, unpublished data).
 The line-scan camera works continuously and, in ef-
fect, takes one image 2048 pixels wide, by several million pixels 
long, depending upon sampling duration. Each pixel requires 2 
bytes of storage (12-bit resolution). The system described there-
fore produces video data at a rate of 2048* 70,000*2 = 286.72 
MB/sec. An image acquisition system capable of handling this 
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data rate in sustained mode must be specified.  A line-scan cam-
era was chosen to ensure that the entire water column was im-
aged, removing the uncertainty of skipped frames, over-lapping 
images and gaps between images that are a serious cause for 
concern with normal area-scan cameras in variable flow-rate 
conditions. A side effect of this type of camera is that the pixel 
aspect ratio will change according to the water flow-rate through 
the imaging cell. To minimise the effect of image compression 
the image pre-processing accounted for this in two ways, first-
ly by stretching of the image to compensate the compression, 
and also by using logarithmic encoded parameters to encode the 
specimen features.

Image acquisition system
 The camera is connected to an EPIX PIXCI® E4 im-
age acquisition card mounted in a PCI Express x16 slot in a PC 
workstation running Windows XP. This frame grabber is capable 
of 700 MB/sec sustained data transfer via the PCI bus. Sufficient 
redundancy has therefore been built in for a possible doubling of 
camera line rate at a future time. 

System Design – Software
Image Acquisition Software
 Image acquisition and processing is achieved using a 
bespoke image capture system designed to process a large num-
ber of specimen images each second, with large variation in 
specimen concentration over time. Image acquisition by LiZA is 
controlled by this system, a C++ programme written and com-
piled by the authors using Microsoft Visual Studio 8.
 Operationally, the EPIX frame grabber writes scanned 
lines into a circular buffer of 16 blocks of 256 scan lines. How-
ever, this means the image of a specimen can be broken up over 
two or more blocks. The software must recombine partial im-
ages in each block, while minimising the number of pixels it 
copies across memory. The EPIX frame grabber and software 
transfer the blocks into system RAM. The software applies a 
threshold boundary algorithm that visits each pixel once to cre-
ate a binary mask of boundaries of each object detected, and fits 
a bounding rectangle. Rectangles touching the upper or lower 
boundary of the block are tagged as partial objects. A “stitching” 
algorithm is then used to combine rectangles across blocks, and 
pixels within completed blocks are copied out to a large circular 
buffer of specimen images. Another process writes the specimen 
images to disk. See Fig. 21 for a schematic flow diagram of the 
image capture process. All imaged particles are thus processed 
and stored to hard drive, date stamped as TIF image files.

Figure 21: Image acquisition flow chart with (inset) an example of im-
age segmentation

 With this software design most pixels are only trans-
ferred from RAM to a CPU register once. Only if a pixel is part 
of the image of a specimen is the pixel accessed again to copy 
it to the circular image buffer, and eventually accessed again to 
write to disk. The boundary mask is small enough to fit in the 
processor cache memory. The rectangular data structures are 
small, and are reused, so also reside in cache memory. The large 
circular buffer of images in memory is able to smooth out fluc-
tuations in the rate of sampling such that the system can cope for 
small periods of time with sampling more images than can be 
written to disk.

Image Analysis Software
 PIA pre-processes each image, extracting numerical 
data from particles in the field of view following the methods 
described for HAB-buoy[13] and DiCANN[24] which both use the 
same image pre-processing method. 
 The resulting 134-element vector is stored in a file of 
such vectors, with each row unique to a specimen, one file per 
sample. A Random Forest classifier (from the Weka classifier 
toolset[25] is trained using a selected and human-identified sub-
set of the data. Once trained, PIA is able to process a new data 
sample to produce a set of specimen labels, which are used to 
sort the sample images into one of a set of chosen categories. 
A Random Forest classifier[17] was chosen because it cannot be 
over-trained. In tests on gene classification by Statnikov et al[26] 
the Random Forest was out-performed by Support Vector Ma-
chines (SVM). The average performance of SVMs was 0.775 
Area under ROC (AUC) and 0.860 Relative Classification In-
dex (RCI) in binary and multi-category classification tasks, re-
spectively. The average performance of RFs in the same tasks 
is 0.742 AUC and 0.803 RCI. This difference was not deemed 
sufficient to out-weigh the benefit of non-over-training, given 
unbalanced training sets. 
 The target categories were chosen to differentiate the 
images as: air streaks; air bubble large; air bubble small; blurred 
objects; Chaetognatha; Crustacea (copepoda >1mm); eggs; 
nauplii; Ostracoda; Crustacea (small copepoda <1mm; sub-di-
vided into Calanoida, Cyclopoida (Oithona spp.) and Harpac-

J Marine Biol Aquacult   |  volume 1: issue 1Culverhouse, P.F., et al

An Instrument for Rapid Mesozooplankton Monitoring

9



10

ticoida (Microsetella norvegica, (Boeck, 1864)); filamentous 
cyanobacteria (Trichodesmium spp.  - single strands and clus-
ters of T. thiebautii, Gomont 1892 and T. erythraeum Ehrenberg 
1830); and unclassified objects. There were insufficient images 
of Ostracoda, Gastropoda, Decapoda, Polychaeta, Salps, Pro-
tozoa, Dinoflagellata and many other imaged groups to make 
these categories useful to the training regime for the classifier. 
Air bubbles are present due to the nature of the water inlet and 
ship pump characteristics. De-bubbling was not feasible given 
the small size of the bubbles (<300 micron), flow rates and the 
variable particle transit times caused by a de-bubbling chamber.

Figure 22: The image processing flow

 The data processing sequence is shown in Fig. 22. Im-
age files were UTC time stamped in the format ‘year-month-
day. Time of sampling run. Item number’ and stored as uncom-
pressed TIF files, for example 2011-11-05.0658+N12345.tif. 
This format follows the convention used by ZooPhytoImage and 
Zooscan.
 The Random Forest Classifier was set to 50 trees, 20 
parameters per tree drawn from the 134 attributes available. The 
training data was derived from samples 2011-10-07.0548, 2011-
10-21.0648 and 2011-11-03.0516. The training set contained 
more than 40 examples of each target category and a total of 
5,316 particles over the ten defined categories. Tests on unseen 
images revealed the training performance of the classifier. It 
gave an average of 15% training error when tested on three sam-
ples containing over 109,000 specimen images in total. This was 
deemed acceptable for application to all remaining samples in 
the study.
 Results for each sample image comprise a filename, 
a putative category and a probability of being in that category. 
The probability was used to sort specimens into two folders for 
each category: firm and uncertain. Firm is p>0.6, uncertain is 
p>0.33<= 0.6, unknown is p<0.33. Items that were labelled as 
unknown were moved into the folder labelled “unclassified”. 
In development tests this technique allowed a human analyst to 
monitor performance by observing partially grouped sets of im-
ages. The sort is not perfect, but the high probability labels were 
found to be generally accurate. This segregation based upon cer-
tainty of label sped up the sorting as the low probability classifi-
cations take more time to sort, having been observed to be more 
diverse. The expert sorting appears to make use of the ‘pop-out’ 
phenomenon[23] where unusual or highly contrasting specimens 
appear to jump out of the field of view and become very obvious 
to the human. This assists the normal sequential search of imag-
es presented on a computer screen. Some net haul samples were 
used to assess the classifier as well, but the detail is not reported 
here. No class optimisation was carried out[27].
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