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Introduction 

	 Breast cancer is the most common cancer in woman. 
Conventional and targeted therapies are implicated to improve 
survival rates; however treatment resistance, recurrence of dis-
ease and metastasis are still major challenges in breast cancer 
treatment. Particular subpopulations of tumor cells are recently 
identified to provide resistance toward cancer therapy, name-
ly tumor initiating cells (TICs) or cancer stem cells (CSCs)[1]. 
CSCs have been identified in many malignancies and are hy-
pothesized to form clonogenic core of tumor tissues[2]. These 
cells could potentially originates from a more differentiated 
cancer cell that acquires self renewal properties, perhaps as a 
result of epithelial to mesenchymal transition (EMT)[3]. During 

Copyrights: © 2016 Vinayak, M. This is an Open access article distributed under the terms of Creative Commons 
Attribution 4.0 International License.

151

Akhilendra Kumar Maurya, Manjula Vinayak*

*Corresponding author: Manjula Vinayak, Biochemistry & Molecular Biology Laboratory, Centre for Advanced Study in 
Zoology, Institute of Science, Banaras Hindu University, Varanasi-221005, India, Tel:  +91-0542-26701816, Fax: +910542368174; 
E-mail: manjulavinayak@rediffmail.com 

Biochemistry & Molecular Biology Laboratory, Centre for Advanced Study in Zoology, Institute of Science, Banaras Hindu 
University, Varanasi, India

Review Article 												              Open Access

Breast Cancer Stem Cell Mediated Epithelial-Mesenchymal 
Transition Targets: Hope for Breast Cancer Therapy

Abstract
	 Breast cancer is the most frequently diagnosed disease and one of the lead-
ing causes of death among woman worldwide. Treated patients often suffer from 
disease recurrence and metastasis due to presence of a subset of tumor cells known 
as breast cancer stem cells (BCSCs). Presence of BCSC is the reason for resistance 
and failure of therapy due to aberrant activity of aldehyde dehydrogenase, enhanced 
DNA damage, activation of self renewal signaling pathways and epigenetic deregu-
lations. BCSC is a small cell population originating from normal breast stem cells, 
having unique characteristics such as self-renewal, high proliferation rate, ability 
to generate heterogeneity etc. BCSCs demonstrated aberrant activation of highly 
conserved signaling involved in developmental pathways such as Wnt, Notch and 
hedgehog as well as RTK, NF-κB and TGF-β signaling. Deregulation of these signal-
ing pathways is frequently linked to epithelial-mesenchymal transition (EMT) which 
plays an important role in tumor invasion and metastasis by endowing cells with a 
more motile and invasive phenotype. The current review will focus on aberrant sig-
naling and regulation of EMT in BCSC; and translation of the growing knowledge 
into development of targeted therapies.
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tumor progression, cancer cells undergo EMT to acquire stem 
cell properties like invasiveness, dissemination and chemo-re-
sistance. Thus, an in situ carcinoma progresses to an invasive 
carcinoma and cells disseminate throughout the entire body via 
blood and lymphatic vessels. After dissemination, cells must un-
dergo a mesenchymal to epithelial transition (MET) to colonize 
in distant organs. EMT signaling is involved in development and 
maintenance of BCSCs (breast cancer stem cells)[4]. Therefore 
for targeted therapeutic achievement of BCSCs, it is needed to 
have better understanding of EMT signaling and also to identify 
targets of the pathways. 
	 BCSCs constitutes a minority of tumor cells and char-
acterized by expression of specific cell surface markers includ-
ing EpCAM+, CD24- and CD44+, however other markers like 
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ABCG2 (ATP-binding cassette G2), CD10, CD29, CD49f, 
CD133 and CXCR4 (chemokine receptor type 4) have also been 
used to identify BCSCs[5]. BCSCs could be enriched in popula-
tions that underwent EMT due to high expression of transcrip-
tion factors like Snail1, Twist1, Slug, Zebl, Zeb2, fork head box 
proteins FOXC1 and FOXC2[6-9]. It has been shown that both 
normal and malignant mammary stem/progenitor cells express 
high level of enzyme aldehyde dehydrogenase (ALDH)[10]. 
Breast cancer displays frequent intra- and inter-tumor heteroge-
neity as the result of genetic and epigenetic alterations that often 
enhance the vigour of cancer cells[11]. Therefore, characterization 
and understanding of origin of this phenotypic and molecular 
diversity is paramount to improving diagnosis, prognostic and 
predictive biomarkers and ultimately design of therapeutic strat-
egies.
	 Molecular subtypes of breast cancer have been rec-
ognized through gene expression pattern. Both ER and PR re-
ceptors were expressed in Luminal A and B subtypes; however 
they differ in proliferation kinetics. Basal like subtypes are fre-
quently triple negative (ER-/PR-/HER2-) and p53 mutant and are 
aggressive due to poor prognosis. Another subtype i.e. claudin 
low breast cancer is recognized by lack of claudin and cytoker-
atin, although in this case also ER and PR are not expressed. 
ER+ patients and HER2+ patients are successfully treated with 
conventional targeted cancer therapy using tamoxifen and tras-
tuzumab. However, basal like or claudin low subtype fail to re-
spond to targeted therapy[12]. The relationship between intrinsic 
subtype of breast cancer and origin of BCSCs is not well defined 
and remains too elusive. Fragmentary reports are available to 
relate different subtype of breast cancer with specific markers of 
BCSCs. CD44+/CD24- phenotype is associated with basal and 
luminal subtype B breast cancer[13,14]. ALDH1+ phenotype is cor-
related with basal and HER2+ breast cancer[15]. Rare basal-like 
ER-/PR- /K18-/K5+ cells expressing CD44 have been identified 
in the luminal type A breast cancer[16]. Quiescent DNA repair 
capabilities and over expression of drug efflux pumps make 
BCSCs resistant for conventional cancer therapy[17]. 
	 Plethora of signaling pathways is involved in induction 
of EMT, BCSCs generation/maintenance and therapy resistance. 
Here is a brief review of the mechanism of EMT mediated Wnt, 
Notch, hedgehog, TGF-β, NF-κB and RTK signaling pathways 
as well as therapeutic resistance in breast cancer therapy. 

BCSCs mediated epithelial-mesenchymal transition in 
breast cancer metastasis  
	 In course of normal development, cells synchronize the 
process of differentiation as well as migratory pattern to gain 
complexity and specialization of particular cell types. Deregu-
lation in these coordination leads to cancer. EMT plays an im-
portant and intrinsic part of normal development during organo-
genesis and is also recognized as a key event for metastasis[18-20]. 
EMT is involved in process of development like formation of 
primitive streak, the neural crest delamination, heart valve dif-
ferentiation and lung organogenesis[20]. 
	 Epithelial cells enhance their migratory capacity by 
acquiring mesenchymal state through a variety of changes like 
alteration of apico basal polarity, remodelling of intermediate 
filaments, microfilaments and intercellular adhesions by secre-
tion of new matrix proteins and glycosamino glycans. EMT re-
programs the epithelial cells to promote tumor cell metastasis. 
EMT de-differentiates the tumor cells and acquires motility and 

invasiveness to spread into distant organs and further MET re-
boots an epithelial program for establishment of new tumor at 
the sites of spreading[21]. EMT further generates CSCs exhibiting 
resistance to therapy. EMT plays an important role during em-
bryogenesis and healing phenomenon in healthy cells. Loss of 
E-cadherin (protein necessary for cell adhesion) and increase in 
N-cadherin are known to be classic marker for EMT and alter-
ation in these marker are used to study and characterized EMT 
in vitro[22,23]. 
	 Mesenchymal phenotype required for tumor metasta-
sis, is promoted by EMT signaling molecules produced in tumor 
micro environment[24,25]. TGF-β secreted in inflamed microenvi-
ronment represses E-cadherin via stimulating the transcription 
factors Snail and Slug. Further, EMT activating protein Twist 
is activated by HIF-1, secreted in response to hypoxia. Tumor-
igenicity of cancer is enhanced by reduced E-cadherin, which 
is correlated with increased cancer grade. Protein expression in 
BCSCs is similar to EMT leading to decrease in E-cadherin and 
increase in N-cadherin as well as increase in Slug expression[6,26]. 
Additionally, immortalized non tumorigenic human mammary 
cells undergoing EMT are enriched in CSCs markers such as 
CD44+/CD24- and signaling proteins SOX2, OCT4[6,27]. The 
population of BCSCs is significantly increased when mammary 
epithelial cells transformed through HER2 overexpression un-
dergo EMT in vitro.
	 BCSCs transit reversibly in two distinct development 
states EMT and MET due to cell plasticity[28-30]. The EMT cells 
are mainly quiescent and are localized at tumor invasive edge 
adjacent to tumor stroma. These cells express cell surface mark-
er profile CD24- and CD44+[29]. The second state is the MET in 
which cells express de-toxifying enzyme ALDH. BCSCs pos-
sessing both CSC markers CD24-, CD44+ and ALDH+ show 
the greatest tumor initiating capacity[29]. EMT and MET are in-
terconnected in a time dependent and tissue context dependent 
manner. Recently, a direct link between EMT process and gain of 
stem cell competence is demonstrated in cultured breast cells. In 
particular, it was shown that the induction of EMT program not 
only allows cancer cells to disseminate from the primary tumor, 
but also promotes their self-renewal capability[31]. Furthermore, 
stemness and EMT markers in circulating tumor cells (CTCs) 
were associated with resistance to conventional anti-cancer ther-
apies and treatment failure. EMT cells eventually enter into the 
next steps of tumor metastasis cascade, including intravasation, 
extravasation and formation of microscopic and macroscopic 
metastases in distant organs[9,32,33]. The roles of EMT to promote 
tumor cell dissemination are well supported by recent studies on 
CTCs and disseminated bone marrow tumor cells, both of which 
exhibited EMT and sternness characteristics[34,35]. Clinically, de-
tection of five or more CTCs in 7.5 ml of peripheral blood serves 
as an indicator of breast cancer progression and the number of 
CTCs in patients with metastatic breast cancer tends to be a bet-
ter indicator of tumor prognosis compared to other diagnostic 
means[36-38]. 

Breast cancer stem cells mediated Signaling pathways
	 Maintenance and production of BCSCs are dependent 
on the microenvironment often called stem cell niche. The mi-
croenvironment involved in BCSCs consist various factors 
including cytokines, nutrients, pH, oxygen pressure, extracel-
lular matrix and immune cells[20,39]. Growth factors promote en-
dothelial cell survival and increase the generation of invasive 
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BCSCs[40]. Hypoxia affects multiple molecular pathways that 
causes EMT and promotes BCSCs growth leading to enhance 
chemo/radio-resistance[41,42]. The hypoxia inducible protein car-
bonic anhydrase IX (CAIX) contributes to changes in local pH 
in response to hypoxia. CAIX can promote BCSCs prolifera-
tion via activation of mTORC1 signaling[39]. Increased activity 
of IL-6 and STAT3/NF-κβ expression is associated with an in-
creased number of HER2+ BCSCs[39]. 
	 Various signaling pathways having fundamental roles 
in regulation of self-renewal and differentiation of adult and em-
bryonic stem cells have been linked to BCSCs[43]. Wnt, Notch 
and Hedgehog pathways have been implicated in resistance to 
therapy and an increased number of BCSCs during/after treat-
ment. These pathways play key roles during embryonic devel-
opment and homeostasis; and deregulations involved in normal 
breast stem cells self-renewal and differentiation result in a 
BCSCs phenotype. In addition, deregulation in signals associat-
ed with cell proliferation, survival and apoptosis contributes to 
breast cancer. 

Aberrant activation of developmental signaling pathways 

1. Wnt signalling: Wnt signaling pathway is crucial for em-
bryonic development and is involved in cell fate determination, 
proliferation and cell migration[44]. Aberrant Wnt signaling leads 
to various pathological processes including cancer and neuro-
degenerative diseases. Wnt signaling induces and stabilizes the 
accumulation and translocation of β-catenin into nucleus which 
regulates transcription of Wnt target genes leading to build up 
of Snail and down-regulation of E-cadherin which ultimately 
induces EMT[45,46]. Canonical Wnt signaling induces the ex-
pression of Axin 2 and stabilizes Snail which promotes EMT in 
breast cancer[47,48]. In the non-canonical, Wnt signaling activates 
the ERK1/2 pathway which activates β-catenin via RTK-PI3K-
AKT pathway[27]. Wnt pathway target genes such as LEF1 and 
AXIN2 are upregulated in breast cancer[49]. Wnt signaling is im-
portant for BCSCs self renewal[49]. Wnt1 was originally identi-
fied as a proto-oncogene because it was retrieved from an onco-
genic integration site of MMTV (mouse mammary tumor virus). 
Secretion of Wnt ligand from cells in the microenvironment has 
paracrine effect on the invasive edge of tumor, increasing their 
proliferative and invasive abilities[50,51]. ΔNp63 is a key regulator 
of stem cells in both normal and malignant mammary tissues 
and provide direct evidence that BCSCs and normal mammary 
stem cells share common regulatory mechanisms[44]. Wnt sig-
naling is required for normal mammary stem cell function and 
Wnt-responsive cells show enriched BCSCs in mammary gland. 
Natural dietary components including curcumin, resveratrol 
and piperine have also been found to inhibit BCSCs pool and to 
downregulates the Wnt pathway.

2. Notch signalling: Notch receptor has an important role in 
self renewal and cell fate decisions in mammary gland develop-
ment[52-54]. Notch pathway is crucial in determination of cell fate 
and progenitor cell population as it maintains a balance between 
cell proliferation, differentiation and apoptosis. Early breast can-
cer stage frequently activates Notch signaling pathway which 
is correlated with poor prognosis of breast cancer[52,53]. On ac-
tivation, Notch receptor is cleaved by γ-secretase, releasing the 
intracellular subunit NICD (Notch intracellular domain), which 
then translocates to nucleus, interacts with other co-factors and 
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regulates downstream targets transcriptionally. Inhibition of 
Notch signaling is sufficient to reduce mammosphere formation 
in vitro[55]. Notch signaling requires coordination with other sig-
nals like Notch to promote EMT. TGF-β increases Notch ac-
tivity through Smad3, subsequently promoting Slug expression 
which suppresses E-cadherin[56]. Cross-talk of Wnt and Notch 
pathway is needed for tumorigenic phenotype[57]. Transcriptional 
factors like Sox2, Oct4 and Nanog act as master regulators of 
pluripotency. Sox4 induces changes in EMT process, accompa-
nied by an enhanced number of cells with a CD44+/CD24- phe-
notype and higher invasion and mobility of cancer cells in vivo 
and in vitro. 

3. Hedgehog signalling: Hedgehog signaling functions in mul-
tiple tissue/cell types in developing embryo to direct organogen-
esis, including the ventral-dorsal pattern formation in the neural 
tube and anterior-posterior pattern formation in the limb. Hedge-
hog was first identified in a genetic screen for genes required for 
Drosophila’s embryonic patterning. Hedgehog is an embryonic 
development organizer pathway that activates Gli1 and Ptch1 
positive modulators of hedgehog pathway, leading to BCSCs 
maintenance[53]. GLI1 is a downstream mediator of Hedgehog 
signaling which is required for BCSCs self-renewal and tumor 
initiation. 

TNF-α/NF-κB signaling 
	 TNF-α is a pro-inflammatory cytokine involved in 
inflammation, immunity, cellular homeostasis and tumor pro-
gression[28,58,59]. It activates NF-κB which induces transcription 
factors associated with EMT, such as Snail, Slug, Twist, ZEB1 
and ZEB2[60,61]. NF-κB controls the expression of a variety of 
cytokines particularly IL-6 and IL-8, which are closely associat-
ed with CSC function. NF-κB activation is essential for BCSCs 
and inhibition of NF-kB activation exerts profound effects on 
normal breast development[62]. 

Transforming growth factor-β (TGF-β) signaling
	 TGF-β is a potent mediator of growth inhibition in a 
variety of cell types via inhibition of c-Myc expression and plays 
a crucial role in tissue regeneration, cell differentiation, embry-
onic development and regulation of immune system[63]. TGF-β 
suppresses tumor growth during early stage of tumor progres-
sion. EMT response declined the growth inhibitory response of 
TGF-β[28]. TGF-β and its receptors regulate transcription of var-
ious EMT regulators including Snail, Slug and Twist[28]. Cross-
talk of TGF-β with other signaling pathways like Notch, Wnt, 
NF-κB and RTK is involved in the induction of EMT[64,65]. 

Receptor Tyrosine kinase (RTK) signaling
	 RTK has revealed the diversity in mechanisms of their 
activation by growth factor ligand binding to activation of in-
tracellular tyrosine kinase domains. Mutations in RTKs and ab-
errant activation of their intracellular signaling pathways have 
been linked to cancer[66-72]. RTKs also have been involved in 
EMT process and tumor cell invasion. Activation of RTKs and 
their trafficking proteins PI3K, MAPK etc along with TGF-β are 
sufficient to regulate the EMT[28]. Crosstalk of RTK with Wnt 
and EGFR pathways has been reported in activation of EMT[28]. 
	 Over expression of various signaling mediators like 
TGF-β, TNF-α, Wnt, Notch and Hedgehog are established to be 



activators of EMT; and induction of EMT causes stemness lead-
ing to formation and maintenance of BCSCs[73]. Suppression of 
the hyper activated signaling reduces tumor violence as well as 
EMT process[74,75]. However, neoplastic transformation of nor-
mal stem cells is known to produce BCSCs[76]. Therefore, the 
process of BCSC formation and EMT is not sequential. Both 
processes are activated with similar abnormal signaling, and pro-
mote each other. Crosstalk between various signaling pathways 
exerts synergistic effects in the regulation of BCSCs. Therefore, 
inhibition of the crosstalk between embryonic and other signal-
ing pathways is crucial for breast cancer therapy. 

Breast cancer stem cells and therapy resistance 
	 Breast cancer starts as a local disease, but it can metas-
tasize to the lymph nodes and distant organs. Nowadays more 
than 80% of patients under treatments receive adjuvant chemo-
therapy, although approximately 40% of patients relapse and 
ultimately die of metastatic breast cancer. Tumor regrowth fol-
lowing chemotherapy/radiotherapy can be arrested if the re-pop-
ulating cells are destroyed with a selective BCSCs targeting 
agent[77].
	 BCSCs possess an invasive gene signature which 
correlates with increased metastasis and poor survival[30,78]. In 
mouse xenograft model of human triple negative breast cancer, 
the metastatic cancer cells in lungs over express BCSCs marker 
CD44 and are able to regenerate tumor following transplantation 
in immune-suppressed mice[79]. High metastatic and invasive ca-
pability of BCSCs was also found in circulation of breast cancer 
patients who were undergoing or had completed treatment[80]. 
Various studies indicated that BCSCs are relatively resistant to 
traditional cancer therapies including chemotherapy and ioniz-

ing radiation in breast cancer cell line, primary mammary tumor 
cells and patient derived tumor xenografts[81-91]. Chemotherapy 
treatment enriches the cells that express markers of BCSCs. In-
creased ATP binding cassette (ABC) transporters and slow cy-
cling nature of BCSCs serves as a potential mechanism for che-
moresistance. Breast cancer resistance protein (BCRP) and Pgp 
were identified in MCF7 which is involved in MDR. HER2 and 
EGFR inhibitor Lapatinib, decreased the population of BCSCs, 
as HER2 overexpression has been shown to drive BCSCs activ-
ity[88,92]. 
	 Further, the presence of residual ALDH+ cells following 
new adjuvant chemotherapy was found to associate with a high 
recurrence rate[93]. Both ALDH+ and EpCAM+CD24−CD44+ are 
able to enhance migration/invasion capacity, intrinsic detoxify-
ing ability, efflux activities, DNA damage response and antioxi-
dant defence[94-101]. Current treatment strategies and compounds 
targeting EMT are mainly aimed at various EMT inducing sig-
nals[102-107]. EMT also results in the resistance of the MCF7 cell 
line to tamoxifen. 
	 Micro RNAs (miRNAs) are associated with normal 
biological processes including stem cell maintenance, differ-
entiation and development. However, deregulation is reported 
in various human diseases including cancer as miRNAs act as 
either oncogenes or tumor suppressor genes[108-110]. The miR-
NAs regulate EMT via various classes such as miR-183 cluster, 
miR-200 clusters, miR-142, miR-221-222, miR-214 cluster and 
let-7. The miRNAs have a vital role in breast cancer stemness, 
metastasis and progression[77,111]. Targeting key EMT regulators 
such as ZEB1, SIP1 and SIRT1 by miR-200 family inhibits EMT 
process[112,113]. Further, suppression of miR-200c expression by 
IL-6 has been reported in EMT progression[114]. 

Figure 1: Molecular signaling involved in induction of EMT and regulating BCSCs in breast cancer metastasis
Aberrant activation of Wnt, RTK, TGF-β, Notch and Hedgehog signalling leads to EMT converting epithelial cells to mesenchymal cell pheno-
type. Transcription factors such as Snail1/2, ZEB1/2, Slug, Smad, NF-κB, GLI as well as signalling protein PI3K and AKT, promote EMT via 
suppression of E-cadherin and induction of Vimentin. EMT is crucial for invasion, intravasation, circulation and extravasation; and ultimately 
leads to colonization of metastatic cells by mesenchymal to epithelial transition (MET). The EMT cells are characterized as relatively quiescent, 
E cadherin negative, Vimentin positive and upregulated p53 and p21; however MET cell are proliferative, E cadherin positive, Vimentin negative 
having downregulated p53 and p21.
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Conclusions 

	 The critical roles of BCSCs in breast cancer carcino-
genesis highlight the demands for developing novel therapeutic 
strategies to eradicate this disease. Plasticity of BCSCs to al-
teration between EMT and MET state allows for invasion, dis-
semination and metastatic growth at distal organs resulting in 
therapeutic resistance. The plasticity could be readily identified 
by expression of distinct cellular markers. Targeting BCSCs me-
diated EMT via modulation of Wnt, Hedgehog, Notch, TNF-α/
NF-κB, TGF-β and RTK signaling pathways promises pre-
vention of therapy resistance and disease recurrences. Various 
signaling pathways involved in breast cancer metastasis do not 
operate in isolation, but coordinated network is associated with 
phenotype of BCSCs. Modulation of Wnt, Hedgehog, Notch, 
TNF-α/NF-κB, TGF-β and RTK signaling pathways might trig-
ger surprising compensatory pathways that could neutralize the 
treatment effects. Therefore, in-depth understanding of the coor-
dinated signaling network is needed to target BCSCs with spe-
cific inhibitors in combination. 
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