Journal of Anesthesia and Surgery

Mini Review Article

New Program for Estimation of Degree of the Patient's severity

Andrey Belousov*

Laboratory of Applied Nanotechnology of Belousova, Kharkov Medical Academy of Postgraduate Education, Ukarine

*Corresponding author: Andrey Belousov, Lenina, 31-v, fl. 32, Kharkov, 61072, Ukraine, Tel: +38050-915-18-89; E-mail: an.belousov2012@yandex.ua

Abstract

Based on parameters of the previously developed by the author universal analytical system of physiological condition of the body (PHUAS) a new algorithm for assessing of the patient's severity was proposed. Algorithm of computer program allows identify risk groups among patients in severity general condition automatically quickly and objectively. Also, it permits to determine optimal and efficient options of prevention and treatment, avoid in-depth examinations that can save both time and money. The data that were obtained could be used for the subsequent correlation with various factors that influencedon organism. These factors were such as ecology, nutrition, medications, vaccine, methods of intensive therapy, pharmacotherapy, etc. In general, the proposed algorithm allows estimating the severity of the patient's health, improving welfare of the population in terms of underfunding by means objective and rapid examination of a large number of people.

Severity; Prevention; Efficiency of treatment; Correlation

Keywords: Algorithms; Program of PHUAS; Assess; Physiological condition;

Introduction

At present, the doctor's arsenal has few tens of rating scales, most of which have been used in the practice of intensive care units. Some of them have received global popularity and have been used in virtually all countries of the world (such as APACHE, SAPS, TISS), others (MPM, TOSS) have been applied more rarely^[1,2]. Objective assessment of the severity of the patient's condition is a necessary tool for decision-making on management of patients, solving the problems of transporting them and the optimum placement of patient care (emergency department, specialized department, ICU, etc.), comparison the outcomes of patients depending on the therapies and quality of care. The latest versions of rating scales (APACHE III, SAPS II) were build on new principles of construction - selection and weighting of variables, which based on statistical modeling techniques and the risk of death was estimated by means multiple logistic regression model^[3].

Today most of hospitals district and city centers have the significant deficiency of technical equipment, so using of these evaluation systems are objectively impossible. Many scoring systems are very time-consuming and cumbersomethemselves, and, therefore, they need to be updated and improvedconstantly. Besides, each of these systems scoring has its own specific variables for assessing of the severity of the disease. It determines not only their specifics butsubjective approach in assessment of the parameters.

Therefore, every physician who has used a particular evaluation system in practice often finds out inconsistency between of clinical severity of patient and result of assessment. Due this fact, the forecast of mortality is not always veridiCitation: Andrey B. New Program for Estimation of Degree of the Patient's severity. (2015) J Anesth Surg 2(1): 40-42.

Received date: March 30, 2015 Accepted date: June 23, 2015 Published date: June 26, 2015

DOI: 10.15436/2377-1364.15.016

cal. Another important disadvantage of the above evaluation systems is the inability to conduct a complex analysis of clinical and laboratory data. In 1990, in Leningrad, on the basis of LMT the software-Research Module for analysis of clinical and laboratory data (GEMA) was first developed. The first version of intellectual medical system was created on this basis in 1993. This software package was namedOMIS^[4].

However, intelligent computer OMISsystem couldn'tbe objective in general cases. The computer system wasn'table to take into account all nuances of individual clinical and laboratory data. New universal analytical evaluative system of the physiological state of the organism (PHUAS) that was created by the author was an attempt of combining the positive aspects of the above evaluative systems^[5] (Figure 1).

Copy rights: ©2015 Andrey B. This is an Open access article distributed under the terms of Creative Commons Attribution 4.0 International License.

40 Andrey B J Anesth Surg | volume 2: issue 1

Figure 1: Analytical PHUAS system (fragment)

		,					Transfusion	and Hematology
		UNIVE						
w w w .nanolab.com an.bebusov2012@	mua Byandar ya		. Professor An			not nassed for	with mathematic	cal proofs. Leonardo da Vinci
Surname	A. Pavlova	NO HOMAN KIVE	Sugation Can no	t be called a tild	e autence, il t is	not passed ente	rogii matriemati	arpicola, Leonaldo da Vinca
Nº	1567							
Diagnosis	Chronic Urtic		20.00				- 6	Norm
Stages	01.12.2005			29.12.2005		-		Techniques
Age Height	166	166	166	166	166			
Weight	60			62	63			
1 body	37	37.4	37.8	36,6	36,6	N 99		
t coefficients	2000	2100	2000	2000	1200			
Diaresis V1	2600	2680	2680	2180	2220	-300	-300	S.A. Sumin, 1997
V2	3170	3299	3199	2699	1913,5	-200	-200	
ΔV	-570	-619	-519	-519	306,5	-100	-100	
Inflation	1200	2200	2000	2000	1700			
Na+ Urea	3.3	3.9	2,5	140	146	2 31	- 3	135-145 mmol/I 2 5-8.3 mmol/I
Diood plucos e	5.2			5	5.3	3 31	- 3	3.5-5.5 mmol/l
Osm. of blood	270.46	282.42	271.32	277.4	290,26	9	9	280-293 mos m/k g
Imp. WEB	hypot deg.	hypothes	hypot deg	hypot deg	isot beg	The state of the s		
Total protein	23.43	87 22,11	70 23, 1	20,79	22,77	0	-	65-85 g/l 21-25 mmHg
Prop.Pul.Rate		22,11	23,1	20,79	22,11	0	U	Sheych-Zade, 1999
Hb cap			124	118	138			
Hb ven	160	120	123,5	116	128			
ΔНЬ	160	120	-0,5	-2	-50	0	0	0
Enythrocytes Leukocytes	5,2 6,8		4 10.8	3,5	4.1			
Platelets	300	220	240	311	244			250-300 thousand/mm3
S boody	1,66332999	1,69082491	1,69082491	1,69082491	1,70440605	0	0	
Albumin	48,5696	38,7996	39,9	38,7996	40,4514	18,5	18,5	46-65 g/1
Total protein	76,9068	65,9224	67,284	65,9224	67,99075	53,2	53,2	65-85 g/l
n-Amylase PR	30	13,7	12	12 70	10,5	2 3		12-32 g/(h*l), Karavey
APs	105			85	100	8 6	- 3	
APd	75			55	75			
Pul.preasure CVP	30	40	35	30	25	0	0	40-60 mm Hg
Vblood loss(M)	-969.23077	333.846154	217	467.384615	67.8461538	0	0	
Vblood loss(f)	-830,76923	286,153846	186	400,615385	58,1538462	0	0	Moore
Shock Index	0,62857143	0.8		0,82352941	0,8	#ДЕЛ/0!	#ДЕЛ/0!	0.54, AlgBrubera
pBlood Vol(M)	4,2	4,34	4.34	4,34	4,41	0	0	
pBlood Vol(f) Blood Vol - 1	3,6	3,72	3,72	3,72 3.4	3,78	0	0	
W.P. of Ht	13.2			14.7	13.8			
Blood Vol-2	4,54545455			4,21768707	4,56521739	#ДЕЛ/0!	#ДЕЛ/0!	Sydora
∆Blood Vol	1.0454545	1.1350043	1,3285714	-0.8178871	1.2652174	#ДЕЛ/0!	#ДЕЛ/0!	0
Heart Vol	48.4	62,4 4,992	59,9 4,792	60,4 4,228	45.9	100	100	55-90 ml, J.Starr 4-6 l
MVBC Heart Index		2.95240504	2.83411958	2 500 55 4513	2 15441619	0 WДЕЛ/0!	0 #ДЕЛ/0!	2.8-4.2 l/min*m2
SAP	85	73, 3333333	71,6666667	65	83,3333333	0	0	70-150 m mHg
TPVR	2128, 19309	1174,91987	1196,1394	1229,58846	1815,08715	#ДЕЛ/0!	#ДЕЛ/0!	900-1400 din/s *s m-5
CHD	0,56941176			0,92923077	0,5508	#ДЕЛ/0!	#ДЕЛ/0!	0.5-1.2 ml/contr. min.
p ST O c ST O	664,4352 582,165498	778,752 591,78872	769,3556 591,78872	637,5824 591,78872	611,0208 596,542119	0	0	640-1400 ml/min eSTO2=420 ml/min*m2
Inequality	82,2697023	186,96328	177,58688	45.7936802	14.4788808	0	0	COTOZ - 420 IIII IIII III III III
ESR	20	30	10	10	18			2-15 mm/h
Ca++								2.1-2.65 mmol/I
CI	100	100	101	1002	104			99-106 m mol/l
BE SB	18,9122	15.327	18.9122	20.7048	24.29	-42 -13.3546	-42 -13 3548	25-28 mmol/l
AST	0,75			0,28		.0,0040	.5,5540	
ALT	0.9			0,41	0.46			
Total Bilirukin	11.5	11	11	11	12			

Analytical PHUAS systemcontains different formulas that are used in medicine (for example,Astrup, Starr, De-Rittis, Algover-Bruber, Sydore, Sheych-Zade, Moore, Sumin and others). The PHUAS system allows to receive 74 integral parameters from 54 obtained analytical parameters by using of software Excel. The data obtained from 128 indicators allow the practitioner to assess objectively the overall picture of the reaction of compensatory mechanisms of physiological and pathophysiological processesand also reliably identify the basic syndrome disease, observe of the pathological process and effectiveness of the therapy. The data of evaluative system that have been obtained in dynamics after four measurements transfer automatically to the table for calculating of the coefficient of correlation, with reliability p <0.05. It allows to reveal the basic pathogenic links of the disease, key clinical and biochemical parameters (Figure 2).

Figure 2: Calculation of the coefficient of correlation by using PHUAS (fragment)

Creatinine	Amylase	BV	BR	MVB	MVL	CaO2	PaO2	Cons. O2	PaO2/FiO2	Ca-v
-0.774597	-0,2404	0.258199	#DE1/0!	0.258199	0.258199	-0.111208	-0.111206	0.914015	-0.111208	-0.111208
-0.333333	-0.245618	0.333333	#DE 170!	0.333333	0.333333	-0.324051	-0.324051	0.613298	0.324051	-0.324051
0.524733	-0,273389	0,184178	#DE 11/0!	0,184178	0.184178	-0,187773	-0,187773	0,40254	0.187773	-0,187773
-0,387928	0,982943	-0,992651	#DET/O!	-0,992651	-0,992651	0,996739	0,996739	-0,393675	0,996739	0,996739
0,225494	-0,953573	0,97714	#DE 17/0!	0,97714	0,97714	-0,964728	-0,964728	0,540069	-0,964728	-0,964728
0,75665	-0, 135135	0,050443	#DE 17/0!	0,050443	0,050443	-0,111113	-0,111113	-0,711773	-0,111113	
-0,19935		-0,142393	#DET/O!	-0,142393	-0,142393	0,09357	0,09357	0, 132596	0,09357	0,09357
0,246183	0,410813	-0,492366	#DEJ/0!	-0,492366	-0,492366	0,481684	0,481684	-0,648432	0,481684	0,481684
0,758597	-0,077291	-0,006502		-0,006502	-0,006502	-0,059691	-0,059891	-0,75553	-0,059891	-0,059691
-0,39553	0,979811	-0,990323	#DE1/0!	-0,990323	-0,990323	0,996706	0,996706	-0,385516	0,996706	0,996706
-0,881104				-0,602861	-0,602861	0,716184	0,716184	0,358044	0,716184	0,716184
-0,455312	0,98494	-0,98856	#DE 17/0!	-0,98856	-0,98856	1	1	-0,324847	1	1
-0,396059		-0,990148		-0,990148			0,996691	-0,384939		0,996691
-0,214944	-0,799055	0,801154	#ДЕЛ/0!	0,801154	0,801154	-0,701898	-0,701898	0,797187	-0,701898	-0,701898
	-0,715806			0,749269		-0.652336			-0.652336	-0,652336
-0,522233	-0,452425	0,522233	#DEU/01	0,522233	0,522233		-0,44771	0,915406		-0,44771
	-0,994773	0,984481		0,984481	0,984481			0,418566		-0,962492
0,830554				-0,114415			-0,03595		-0,03595	-0,03595
0,27591	-0,965945	0,985393		0,985393		-0,978001		0,497325		-0,978001
	-0,886247	0,915905		0,915905		-0,860732		0,7605		
	-0,879949	0,91038		0,91038		-0,853892	-0,853892		-0,853892	-0,853892
-0,70117	0,923656				-0,901504		0,94214			0,94214
-0,290789					-0,998826		0,982746			0,982746
	-0,969923	0,965271		0,965271	0,965271			0,201238		-0,991454
	-0,398431	0,445438		0,445438		-0,324847		1		-0,324847
-0,522233	0,2635				-0,174078				0,177799	0,177799
	#DEV/Oi	# <u>Д</u> ЕЛ/0!	# <u>D</u> EN/0!	#DEU/Oi		#ДЕЛ/О!	#DEV/0i	#ДЕЛ/0!	#DEVO:	# <u>DE</u> 11/0!
0,870388	-0,587655			0,522233		-0,584808			-0,584808	-0,584808
0,682288		-0,132453		-0, 132453			0,078807	-0,76322	0,078807	0,078807
0,173528		-0,856108			-0,856108		0,79359		0,79359	0,79359
#DEU/O!	#DEV/Oi	#ДEЛ/O!		#DEU/Oi			#DEU/Oi	#DEU/Oi	# <u>Д</u> ЕЛ/0!	#AEU/01
0,798447	-0,850923	0,832424		0,832424	0,832424	-0,899554	-0,899554		-0,899554	-0,899554
-0,455312	0,98494		# <u>D</u> EN/0!	-0,98856	-0,98856	1	1	-0,324847	1	1
-0,320726		-0,926941		-0,926941						0,891624
#ДЕЛ/0!	#DEU/O	#DEVO:	#DE170!	#DEU/Oi	#ДEЛVO!	#ДEЛ/0!	#DEU/Oi	#DEU/Oi	#ДEЛ/O!	#DEU/Di
	-0,315797	0,320479		0,320479		-0,173942		0,868117	-0,173942	-0,173942
	-0,695347	0,713748		0,713746		-0,807076	-0,807076			-0,807076
-0,302314		-0,174643		-0,174643						
1		0,333333		0,333333		-0,455312				
Amylase	1	-0,9958		-0,9958	-0,9958	0,98494	0,98494		0,98494	0,98494
	BV	1		1	1	-0,98856	-0,98856			-0,98856
		BR	#DET/O!	#DEU/Oi	#AEVO:	#ДЕЛ/O!	*ИДЕЛ/О!	#ДЕЛ/О!	#ДEЛ/O!	
			IMI A R	1	1	-0,98856	-0,98856			-0,98856
				MVL	1	-0,98856	-0,98856	0,445438	-0,98856	-0,98856
					CaO2	1	1	-0,324847 -0,324847	1	1
		l				PaO2		-U, 324847	0.334047	-0.324847
							Cons. O2	PaO2/FiO2		-U.324847
								F 302/FIO2	Ca-v	1
		I							Ca-v	1

The PHUAS system calculates automatically for individual patient correction of water-electrolyte and acid-base balance, creatinine clearance, and in case of the predicted blood loss - volume of infusion solutions for hypervolemichemodilution (Figure 3).

Figure 3: Calculation of corrective therapy (fragment of PHUAS)

	15	_		,				
			Corrective 7	Therapy				
K+	16,8	1,24	2,48	-12,4	-11,844	0	0	3%KCI (ml)
Ca++	20-30	mmol/l					10 ml 10% C	aCl2 =9 mmol Ca++
Trisamin	-360	-620	-372	-248	0	0	0	3.6% ml
Na+	43,2	74,4	37,2	14,88		0	0	10%NaCl (ml)
NaHCO3	-120	-206,66667	-124	-82,666667	0	0	0	8.4%NaHCO3 (ml)
4%HCI	-64,8	-111,6	-66,96	-44,64	0	0	0	Met.alkalosis (ml)!
Creat.Clearan	445,545455	460,39697	460,39697	440,37971	467,822727	#ДЕЛ/0!	#ДЕЛ/0!	80-160 ml/min
Am. of plas.	-48	148,8	0	347,2	50,4	0	0	(ml)
Am. of alb.	-189,20448	35,723904	2,976	35,723904	-13,650336	0	0	10% Albumin (ml)
Corr. Infusion	1970	1099	1199	699	213,5	-200	-200	ml
Vgl for K	-192	124	99,2	396,8	388,08	0	0	ml 10% Gluc.
Hyp. deg.	-1,5882353	-2,8181818	-1,3576642	-0,5314286	1,03561644	#ДЕЛ/0!	#ДЕЛ/0!	(1)
Hyper.deg	-0,5070423	-0,8732394	-0,4366197	-0,1746479	0,35492958	0	0	5% Glucose (I)
lsot.deg.	3	0	0,351417	-0,4275862	0,7875	#ДЕЛ/0!	#ДЕЛ/0!	(I)
Vinf.(olig)	2950	3050	2950	2950	2150	950	950	
Pol.solution	90							ml/h!!!
		Calculat	ions for hyp	ervolemic h	emod ilution			
TVG	1575	ml	Safely until	reduced he	moglobin aı	nd increase:	s the MVB!!!	
10% Alb	630	ml						
Ringer	945	ml						

Effectiveness of the program requires of basic clinical and biochemical parameters of the body that includes common clinical and biochemical analysis of venous and capillary blood, urine. Also it needs information about the water exchange in day, weight, arterial pressure, respiratory rate, heart rate and body temperature. When the patient is on artificial ventilation, it requires the mode of ventilation of lungs. Based on assessment of the PHUAS program the physician could determine objectively and reliably the main syndrome of disease, the most important biochemical parameters in individual patients and also apply these data for estimation of algorithm of the patient's severity (Figure 4).

	Param eters				Estimat	ed-point al	gorithm		Date	19	Date		Date		Date			
Nº	PHUAS	0,75	0,3	0,2	0,1	0	0,1	0,2	0,3	0,75	12.01.2014	Scores	26.03.2010	Scores	21.02.2005	Scores	26.11.2014	Scores
. 1	ΔV	<-800	-600-800	-600-400	-400-200	0±200	200-400	400-600	600-800	>800	204	0	494,9	0,2	1740,5	0,75	1181,5	0,75
2	IWB	<15	15	16	17-19	20-25	26-28	29-30	>30		38	0,3	35	0,3	46	0,3	40	0,3
3	Blood gluc	<2,3	2,4-2,7	2,8-3,1	3,2-3,4	3,5-5,5	5,6-7,5	6,6-9,0	9-14	>14	6,6	0,1	4,1	0	3,3	0,1	5,7	0,1
4	Osm. blood	<240	240-265	266-269	270-279	280-293	294-300	301-315	316-400	>400	296,62	0,1	283,48	0	287,36	0	291,54	0
5	COP	<15	15-16	17-18,9	19-20,9	21-25,9	26-27,9	28-30	30-32	>32	28,248	0,2	28,38	0,2	27,06	0,1	27,192	0,1
6	ΔHb	<-18	-18-16	-15-8	-7-3	-2+2	3-7	8-15	16-18	>18	-4	0,1		0,1		0,1		0,2
7	Platelets	<140	140-159	160-179	180-249	250-300	301-320	321-350	351-400	>400	188	0,1	196	0,1	400	0,3	132	0,75
8	TPVR	<900				900-1400	1401-1800	1801-2400	2401-2800	>2800	2154,60	0,2	1781,88	0,1	1321,98	0	1708,84	0,1
9	Total Bil.					8,5-20,5	20,6-22,9	23-28	28-39	>40	11,5	0	26,3	0,2		0	11,4	0
10	KdRittis		<0,5	0,5-0,54	0,55-0,59	0,6-0,8	0,81-0,9	0,91-1,2	>1,2		1,44	0,3	1,56	0,3	0,46	0,3	0,92	0,2 0,2
11	K+	<3,0	3,0-3,2	3,3-3,5	3,6-4,1	4,2-5,5	5,6	5,7-5,8	5,9-6,0	>6,0	4,65	0	4,7	0	4,7	0	3,45	0,2
12	Heart Vol	<38	38-42	42-49	50-54	55-90			0.000		86,614815	0	89,770541	0	110,91679	0	95,667965	0
13	tcoagul.	<3	3-4	4,1-4,4	4,54,9	5-10	11-12	13-14	15-16	>16	7	0	6	0	7	0	8	0
14	NII					до 0,1	0,11-0,29	0,3-0,6	0,7-0,9	>1,0	0,18	0,1	0,13	0,1	0,06	0	0,10	0
15	Shok Index		<0,48	0,48-0,5	0,51-0,53	0,54	0,55-0,7	0,71-0,9	0,91-1,0	>1,0	0,31	0,3	0,38	0,3	0,46	0,3	0,38	0,3
16	Nonspec/sp		100	2 W W		до 2	21-29	3,0-3,5	3,6-3,8	>3,8	1,37	0	2,44	0,1	1,07	0	2,92	0,1
17	Denurine		<1008	1009-1010	1011-1013	1014-1028	1029-1031	1032-1034	>1034		1015	0	1015	0	1005	0,3	1015	0
18	U/C	<6	6-7	8-9	10-11	12-20	· ·	76			11,43	0,1	7,90	0,3		0	16,85	0
19	Consum. 02	<110	110-119	120-139	140-179	180-280		- 9			161,94	0,1	212,86	0	259,55	0	195,11	0
20	Pa02/Fi02	<330	330-399	400-429	430-445	446-455	456-460	461-465	>465		456,87	0,1	488,24	0,3	482,53	0,3	476,83	0,3
											- 200							3.04
									Dynam	ics:	Total:	2,1	Total:	2,6	Total:	2,85	Total:	3,4
											IPhas	е	II Phase		III Phase		IYPhase	e
	The severi	ty of the	general co	ondition d	f the paties	nt and the r	isk of acuto	e disorders (of the vital	functions o	of the body	by the sa	en of point	*				
									0.2 low risk	preventive	action), safe	sladeny o	andition					
							34 - medium risk trecommended medical therapyt, a state of mederal									lgr		
									> 5 high ris	k johnny filmera	apy is requir	ed), a seri	eas comitie					

The developed algorithm scoring allows determining the risk of danger of the disease, identifying the degree of clinical severity of the general condition of the patient, finding out the best financially and clinically effective way of prevention and treatment, complex assessing of the quality of the therapeutic and preventive measures.

The main components of the program are systemic approach, real access to health care and social rehabilitation, regardless of gender, age and social status. Also, PHUAS provides independence, the constancy of the diagnostic and therapeutic processes, allows control the volume, quality and timeliness of delivery of health services and their compliance with medical standards.

Also, the advantage of the program is not only fast and objective examination of large number of people, early identification of risk groups with severe condition, determining optimum and effective options for prevention and treatment of disease, retention of time and money for the survey, but also an ability for using the data for their correlation with external factors the environment (ecology, nutrition, addictions, vaccinations, pharmacotherapy, etc.).

References

- 1. Zilber, A.P. Objectification of the patient's severity.Proc: Zilber AP (Eds) Critical care of the medicine. (1995) Petrozavodsk: IzdPetrozavod Univ pp: 131-146.
- 2. Bone, R.C. Why new definition of sepsis and organ failure are needed. (1993) Am J Med 95: 348-350.
- 3. Fery-Lemonniere, E., Landais, P., Loirat, P. Evaluation of severity scoring systems in ICUs translation, conversion and definition ambiguities as a source of inter-observer variability in APACHE II, SAPS and OSF. (1995) Intensive Care Med 21(4): 356-360.
- 4. Belousov, A., Belousova, E., Maloshtan, V. New universal system for assessing the physiological state of the organism (PHUAS) // Pain (2008) PainkillerandIntensiveCare Kiev 2 (d): 22-25.
- 5. Genkin, A.A. [The OMIS program package as an instrument for the systems analysis of clinico-laboratory data (on the 10th anniversary of the scientific research firm Intellectual Systems). Obolochka meditsinskikh intellektual'nykh sistem=The covering of medical intellectual systems]. (1999) Klin Lab Diagn 38-48.