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Introduction

 Liver is the most commonly injured internal organ in abdominal injuries although well protected behind the sub costal 
region[1]. Epidemiological studies revealed that death rate is significantly high in penetrating trauma patients compared to blunt 
trauma patients[2]. With a view to understanding the severity of liver trauma blood transfusion has been considered as an index of 
mortality and hospitalization status in patients with blunt liver and spleen injuries. Enhanced transfusion-associated mortality risk 
in non operative patients indicates the substantial need to reconsider and ameliorate current transfusion practices[3]. Despite the mul-
tifarious advantages of non-operative management in the treatment of liver trauma a few patients with high Injury Severity Score 
(ISS) require operational management. 
 Multifarious treatment options to overcome liver trauma include but not limited to hepatic artery embolization[4], absorb-
able mesh wrapping, use of bioglue, liver transplantation[4], and employment of hydrogels. In this review, a few studies which em-
ployed nanoparticles to overcome liver injury have been discussed. 

Therapeutic Avenues for Livery Trauma
 Diagnosing the extent of liver trauma and understanding the severity play a key role in employing appropriate treatment 
strategies. Patients with severe hepatic trauma involving hemodynamic instability require surgical intervention. Novel therapeutic 
avenues such as hepatic artery embolization and liver transplantation have been extensively used in the treatment of extremely 
severe hepatic damage currently[4]. Although angioembolization procedure shows the success rate of 93%, a few associated com-
plications such as hepatic necrosis (15%), abscess formation (7.5%), and bile leaks limit its success[5]. In another study, studies on 
wistar rats showed that the collagen adhesive associated with fibrinogen and thrombin successfully attenuates experimental hepatic 
injury by curtailing the occurrence of adhesions between the liver and the surrounding structures[6]. Recently, in vitro and in vivo 
studies showed that betaine which is an ingredient in food and also synthesized in liver, plays a pivotal role in reversing the liver 
injury significantly[7]. 
 Absorbable mesh-wrapping has been used to overcome the liver trauma[8]. Remarkably reduced incidence of septic com-
plications and absence of re-bleeding hazard are a few advantages associated with this treatment. Growing lines of evidence sug-
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Abstract
 
 Liver injury has been a major problem for a few decades. There is a bur-
geoning need to develop appropriate armamentarium to overcome liver injury in 
specific and abdominal injury in general. Recently, nanotechnology approach has 
been gaining grounds to treat multifarious gastrointestinal disorders. A few therapeu-
tic avenues are discussed in this review, which entail the design, characterization and 
applications of therapeutic hydrogels.
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gests that application of Cryo Life Bioglue also effectively seals 
the laceration and improves the repair process[9]. Bai, et al.[10] 
designed genetically engineered cells harboring the theranostic 
gene circuits which provoke therapeutic protein production in 
response to the increased bile content due to the liver injury. In 
order to circumvent the issues associated with the above men-
tioned therapies, nanotechnology has been employed to design 
potential particles.

Nanotechnology to Overcome Liver Injury
 Superparamagnetic iron oxide-coated gold nanoparti-
cles (SPIO@AuNPs) targeted against liver injury showed appre-
ciable therapeutic efficacy in mice[11]. To prepare these nanopar-
ticles amorphous silica coated SPIO nanoparticles were reacted 
with 2 - 3 nm gold nanocrystals. The obtained particles were 
centrifuged and rinsed with deionized water. These nanoparti-
cles transfected into adipose-derived mesenchymal cells showed 
enhanced theranostic efficacy. They were administered into mice 
in which liver damage was induced by 2-acetylaminofluorene. 
The in vivo non-invasive MR imaging was achieved by these 
nanoparticles. In line with this, these nanoparticles can be an 
appropriate theranostic armamentarium for livery injury.

Hydrogels
 Hydrogels play a pivotal role in sustained drug release, 
tissue engineering matrices since they closely resemble extracel-
lular matrix. The synthesis, characterization and applications of 
hydrogels have been thoroughly reviewed[12-14]. Since the robust 
discovery of Hydroxyethyl Methacrylate (HEMA) hydrogels in 
1960, they have been extensively utilized for biomedical appli-
cations[15]. Multifarious hydrogels currently in use for a wide 
range of diseases include but not limited to stimuli sensitive hy-
drogels[16-29], redox-active injectable hydrogels[30-34].
 Wealth of studies showed that the traumatic hemor-
rhage can be successfully overcome by employing multifarious 
hydrogels[35]. Horio et al., developed photocrosslinkable chi-
tosan hydrogel to accomplish hemostatic efficacy and treat liver 
injury[36].
 Studies on keratin hydrogels unraveled that liver inju-
ry can be successfully overcome. In this study, keratin isolated 
from hair was flocculated with Phosphate Buffered Saline (PBS) 
and citrate buffer and incubated at 37°C for 12 hours. Further 
it was centrifuged and keratin pellet was washed with PBS or 
Dulbecco’s Modified Eagle Medium (DMEM). With a view to 
developing fibroblast encapsulation flocculated keratin solution 
and cell culture medium were mixed followed by addition of 
cell suspension. Cell loaded hydrogels were incubated at 37°C 
and 5% CO2 for 8 hours and culture medium was added. In vitro 
L929 culture studies showed that cell viability was appropriate 
during encapsulation and a 16 day culture period. The remark-
able in vivo retention of these hydrogels and significant less con-
traction compared to collagen hydrogels make them a substantial 
platform to overcome liver injury[37-40]. The success of these hy-
drogels offers a significant impetus to the drug candidate screen-
ing research. In another study, keratin based hydrogel with the 
self assembly property showed better interaction with cells and 
enhanced therapeutic effect[41]. Furthermore, in a recent study 
hepatic growth factor loaded hydrogel showed specific therapeu-
tic efficacy against acute hepatic failure. In this study, functional 
induced pluripotent stem cells (iPSC-Heps) were designed by 

reprogramming human dental pulp fibroblasts. Further, an in-
jectable Carboxymethyl-Hexanoyl Chitosan (CHC) nanoscale 
hydrogel with controlled release of Hepatocyte Growth Factor 
(HGF) (HGF–CHC) was synthesized, and the growth capacity 
and hepatic-like functions were evaluated. Eventually, hepato-
protective efficacy of HGF-CHC transplanted with iPSC-Heps 
was targeted in Thioacetamide (TAA)-induced AHF in vivo 
model. Significant therapeutic efficacy of the designed material 
has been observed[42]. While a few key issues limited the success 
of hydrogels until recently, novel hydrogels that were designed 
and used in 3D cell culture systems showed significant efficacy 
in protecting the liver enzymatic activities. Despite the advent of 
advanced therapeutic armamentarium, treatment of liver trauma 
remained a herculean task till date. 

Conclusion

 Hepatic trauma is the most common in abdominal inju-
ries and reposes a serious threat to the life of patients. Although 
non-operative treatment for liver trauma has been extensively 
used yet operative treatment is essential in severe cases. Despite 
the availability of multifarious therapeutic avenues such as bio-
glue, mesh-wrapping, hydrogels, lack of appropriate armamen-
tarium is an Achilles heel till date. A multidimensional approach 
involving the theranostic strategy such as gene circuits may be a 
promising therapeutic option to overcome these liver and asso-
ciated abdominal traumas. Therefore, there is a burgeoning need 
to develop a substantial therapeutic arsenal by utilizing the pan-
oply of available data. 
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