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Introduction

There has been a considerable rise in the number of studies in 
which the principles of non-equilibrium statistical physics and 
related fields can be applied to understand other fields such as 
biology, chemistry and engineering. This interdisciplinary field 
has been very active in the last decade or so and the scientific 
community has contributed considerably towards this goal.  In 
this context, the Fokker-Planck equation is a good tool, and it 
represents the probability density for the position or velocity of 
a particle of which the motion is described by a corresponding 
Langevin equation (Lucia 2014). Since the entropy of a system 
always increases, the Fokker-Planck equation can be used to cal-
culate the entropy.  The Fokker-Planck equations have a wide 
range of applications leading to many interdisciplinary studies. 
This review paper discusses the entropy generation, entropy pro-
duction approach and the Fokker-Planck equation.

Non-Equilibrium Fokker-Planck Equation

Consider a set of n interacting particles.  Let the particles evolve 
with time through the Langevin equations given by

where xi is the position of the ith particle, x = {xi}, fi(x) is the 
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force acting on the ith particle, ri is the noise that is mathemati-
cally considered to be a stochastic variable such that

with Di ≥ 0, different constants for each particle.The associated 
Fokker-Planck equations describe how the probability distribu-
tion, P (x, t) evolves with time (Tome 2006). This can be written 
as

We can write down the Fokker-Planck equation in a more conve-
nient way as a continuity equation,

where Ji is the ith component of the current of probability The 
condition of irreversibility can be expressed as

or

but
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The Fokker-Planck equation has to be solved inside a given re-
gion of the space spanned by the set of variables xi subject to a 
prescribed boundary condition which governs the behavior of 
P(x, t) and Ji(x, t). In the thermodynamic equilibrium case the 
Langevin equationand the associated Fokker-Planck equations, 
which describe a system where

for any pair i and j

Di = Dj

Derivation of Fokker-Planck Equation
Starting from eqn. (2.1) which is the Langevin equation,

Consider a particle at a position x at time t. After a small time δt 
the particle would have moved a small amount given by

here we have taken the average of the noise function and also 
assummed that δx is very small. Sice the average of the noise 
function is zero eqn.(3.3) becomes

and so we can write

using eqn.(2.3) the last term on the right hand side of eqn.(3.5) 
gives

the first two terms on the right hand side of eqn.(3.5) are of order 
(δt)2 and hence can be neglected. So we can write eqn.(3.5) as

Now we have to find a probability distribution function which 
can give us eqn.(3.4) and eqn.(3.7). For that purpose, let us con-
sider the conditional probability P(x, t + δt; x', t). This probabili-
ty is defined as the probability that the particle is at position x at 
time t+δt given that at a small time δt earlier it was at position x'. 
From definition we know that

where δx is a small change in position corresponding to δt. The 
Taylor series for a function f(x) is written as

for the right hand side of eqn.(3.8) we can write

now we will make use of the Chapman-Kolmogorov equation 
according to which

where x0 is the value of x at t0 and x', t' are values at any interme-
diate step. Using this we can write

using eqns. (3.8) and (3.10) we can write

simplifying and rearranging the terms we get,

using eqn.(3.4) we can write

simplifying this further we get

and hence

where
( , ) [ ( ) ] ( , )i i i

i

J x t f x D P x t
x
∂

= +
∂

This is the Fokker-Planck equation and they describe the time 
evolution of the probability distribution P(x, t).

Entropy Production and Fokker-Planck Equations
The rate of change of the entropy S of a system can be written as 
(Nicolas & Prigogine 1997)

dS/dt= ς-Ω

where ς is the entropy production due to the irreversible process-
es in the system and Ω is the entropy flux from the system to the 
environment. In an equilibrium system entropy is a well defined 
quantity but in non-equilibrium systems the entropy as well as 
the production of entropy is not well defined. Since a non-equi-
librium system is defined by the Fokker-Planck equations, we 
have attempted to calculate the production of entropy in such 
systems. Here we use the Gibbs entropy because the Gibbs en-
tropy does not require the system to be single or well defined 
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state. The Gibbs entropy of a system at any time t is given by 
(Tome 2006)

( ) (x, ) [ (x, )] xS t P t ln P t d= −∫
where dx = dx1dx2......dxn. Using eqn. (2.5) we can express the 
derivative of the entropy as

( ) [ (x, ) 1] (x, ) xi
i

d S t lnP t J t d
dt x

∂
= − + ∑

∂∫
Integrating we get

( ) (x,t) (x, )i
i

d S t J lnP t dx
dt x

∂
= −

∂∑∫
using eqn. (2.6) we can write

2[ (x, )]1( ) (x,t) (x) x + x
(x, )

i
i i

i i

J td S t J f d d
dt D D P t

= − ∑ ∑∫ ∫
comparing this with eqn. (3.1) we see that

1 (x,t) (x) xi i
i

J f d
D

Ω = ∑∫
and

2[ (x, )] x
( , )i

Ji t d
D P x t

ς = ∑∫

Using eqn. (2.6) we can write eqn. (3.6) as

21 [ (x)] (x) (x, ) xi ii
i

f f P t d
D

 
Ω = + 

 
∑∫

where fii(x) = ∂fi(x)/∂xi. This can be expressed as an average 
over the probability distribution.

21 [ ( )] ( )i ii
i

f x f x
D

 
Ω = + 

 
∑

Entropy Generation and Fokker-Planck Equations
It has been discussed by Jaynes that Gibbs’ formalism for statis-
tical physics of systems under equilibrium can be understood as 
a generalized form in a statistical inference theory for non-equi-
librium systems (Dewar 2003). Jaynes developed non-equilibri-
um statical physics for the stationary state constraint on the basis 
of maximum entropy, and his approach consisted of maximizing 
the path. The Shannon information entropy for the path can be 
written as

( )nS p l pγ γ
γ

= −∑
with respect to pγ of the path γ. According to Shannon, the infor-
mation entropy can be written as the logarithm of the number of 
outcomes i with non negligible probability pi, while in non-equi-
librium statistical physics it is the given as the logarithm of the 
number of microscopic phase-space paths γ having non negli-
gible probability pγ (Dewar 2003; Lucia 2014) Following this 
approach, we know that the information entropy for open sys-

tems is related to their entropy generation by (Lucia 2008; 2009; 
2010)

( , ) [ ( , )]g B B nS S P x t l P x t dxγ γκ κ= = − ∫
with pγ = Pγ(x, t). This relation is the statistical definition of en-
tropy generation. This can also be explained as the missing in-
formation which is necessary for predicting which path a system 
of the ensemble takes during the transition from one state to an-
other. The Guoy-Stodola theorem (Lucia 2014) gives

W¯=T0Sg

where W¯ is work lost due to internal irreversibility in a system. 
By definition, the entropy generation can be related to the power 
lost, P due to irreversibility,

0
0

1
gS Pdt

T
τ

= ∫

where T0 is the environmental temperature, considered constant 
and τ is the time duration of a physical process. The power lost 
by definition is given as,

(x) i
i

dxP f
dt

= ∑
Using the Langevin equation we can write this as

(x)[ (x) ( )]i i iP f f r t= +∑
and so Sg can be written as

2

0

([ (x)] ( ))g i i iiS f D f x
T
τ

= +∑

where fii =∂fi/∂xi Considering the mean value, we can finally 
write this as

2

0

([ (x)] ( )) (x, ) xg i i iiS f D f x P t d
T γ
τ

= +∑∫

and hence

0

(X) (x, ) xg i iS f J t d
T
τ

= ∑∫
where the last term is related with the Fokker-Planck equation.

Conclusion

In this review paper we have studied the Fokker-Planck equa-
tion and derived them. The principles of statistical physics al-
low a connection between the Fokker-Planck equations and the 
different entropy approaches. Our future work will be to ap-
ply the Fokker-Planck equations and the enytropy approaches 
to systems which exhibit a non-equilibrium physics behavior. 
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By doing so we will be able to understand such systems better.
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