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Introduction

      The intracellular protozoan parasite Trypanosoma cruzi causes Chagas’s disease in humans[1]. About 5 million to 8 
million people are infected by T. cruzi around the world[2]. Chagas disease has acquired global relevance because is spreading to 
non-endemic countries[3], representing a significant economic global burden[4]. The parasite infects many tissues and the presence 
of the parasite in peripheral neurons and heart muscle cells may be related to some of the pathological findings in the acute and 
chronic infection[5]. The systemic and tissue-localized immune responses induced during the acute infection are not sufficient to 
eradicate the pathogen, resulting in chronic infection[6]. Approximately 30 to 40% of the infected patients may develop megacolon, 
heart failure and cardiomegaly during the chronic phase of the disease, even many years after the acute infection[1]. Yet, the majority 
(about 60 to 70%) of the patients that progresses to the chronic phase of the infection remains clinically healthy[7]. Recently, results 
of a multicenter, double-blinded, controlled clinical trial evaluating the efficacy of a trypanocidal drug (benznidazole) to halt the 
disease progression concluded that this pharmacological treatment did not confer protection against disease[8,9]. This suggests that 
other pathogenic mechanisms, besides the parasite itself, are involved in the progression of the disease[5,10]. T. cruzi induces a strong 
immune response against its own molecular components, but the infection also induces a strong immune response to host self anti-
gens[10]. Therefore, a malfunction of immune regulatory mechanisms may also be involved in the autoimmune responses during the 
infection[11]. In addition, the immune response to parasite antigens and host self-antigens are not dissociated and occur concomitant-
ly[10], and both should be considered as promoters of tissue lesion during the infection. Nevertheless, one may assume that in most 
of the chronically T. cruzi-infected patients, an effective but regulated immune response is achieved preventing the development 
of pathology[2]. This may be due to the action of CD4+ CD25+ regulatory T cells (Tregs) that may curb the autoimmune response, 
allowing a partially effective anti-parasite immune response. Recent findings in humans, have shown an increased percentage of 
Treg cells in chagasic subjects in the indeterminate chronic phase (free of disease) when compared to patients with heart damage, 
suggesting an important role for Tregs in Chagas disease[12]. Studies concerning Tregs and Chagas disease should also consider 
other Treg marker such as CD15s to discriminate supressors (CD15s+) versus non-suppressors (CD15s-) regulatory T cells, as the 
expression of this molecule could be an important prognostic biomarker for disease progression[13]. Moreover, it has been recently 
demonstrated, using a nondepleting monoclonal antibody to CD25 that regulatory T cells may also help to control the adaptive im-
mune response, during the infection in mice[14]. The immunomodulatory activity of the nondepleting monoclonal antibody to CD25 
encompassed a delayed increase of Treg frequencies and an augmented production of IL-10 by T cells that correlated with less myo-
cardial inflammation in the chronic infection[14]. Consequently, there is evidence that the functional activity of Treg cells might be 
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of crucial importance during the chronic phase of the infection 
in decreasing tissue destruction and pathology. Therefore, the 
notion concerning the manipulation of Treg cells by antibodies 
to CD25 holds promising as a tool to treat pathological outcomes 
in Chagas disease. In addition, interleukin-2 (IL-2) binds to its 
high affinity receptor (CD25) and is also involved in the regu-
latory arm of the immune response by augmenting the prolifer-
ation of regulatory T cells[15,16]. Low amounts of IL-2 favor the 
immunoregulatory pathway, whereas high amounts are required 
for driving effector immune responses[16]. The role of IL-2 in the 
immunoregulatory axis of the immune system is evident in mice 
and humans where the availability of IL-2 was reduced[15,16]. For 
instance, IL-2R-beta chain knockout mice develop autoimmune 
inflammatory disease and blocking of IL-2 by in vivo treatment 
with monoclonal antibody to IL-2 accelerates autoimmunity in 
mice[17,18]. Additionally, several polymorphisms in the IL-2 path-
way have been linked to type I diabetes and loss of function of 
Treg biological activities in human studies[19]. 

Concluding Remarks 

 The study of acute and chronic phases of infection with 
intracellular pathogens, such as T. cruzi, allows the elucidation 
of the mechanisms and conditions that may be targeted to re-
program the host immune system by using tools that interfere 
with components of the regulatory arm of the immune system 
machinery, thus providing new strategies to treat Chagas dis-
ease, besides the use of drugs that only kills the parasite in vivo, 
sterilizing the host. In this regard, the in vivo biological activity 
of nondepleting antibodies to CD25 seems to reinforce rather 
than inhibit the function of regulatory T cells in mice and hu-
mans[14,20]. Additionally, new approaches, including in vivo ad-
ministration of IL-2 or complexes of IL-2/anti-IL-2 to increase 
the numbers and functional activity of regulatory T cells are 
also desired[16,21]. However, it should be noted that more studies, 
using different strains of T. cruzi in combination with distinct 
strains of mice should be performed in order to better establish 
this conceptual clinical intervention. 
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