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Introduction

 With the high-throughput genotyping technology of Single Nucleotide 
Polymorphism (SNP), Genome-Wide Association Studies (GWASs) are consid-
ered carrying hope for resolving complex connections between genotype and phe-
notype[1]. GWASs intend to recognize genetic variants associated with disease by 
assaying and analyzing numbers of SNPs. Although traditional single-locus-based 
and two-locus-based methods have been standardized and led to various exciting 
findings, recently, a substantial number of GWASs show that, for most disorders, 
joint genetic effects (epistatic interaction) across the entire genome are broadly exist-
ing in complex traits[2]. At present, identifying high-order epistatic interactions from 
GWASs is computationally and methodologically challenging.
 Our lab’s research interest focuses on the problem of searching high-order 
genome-wide association with considering two frequently encountered situations, 
i.e. one case one control and multi-cases multi-controls. Existing approaches for ex-
ploring epistatic interactions for the first situation can be classified into four gen-
eral categories, exhaustive search, stepwise search, stochastic search and heuristic 
approaches. In the review of recent works of literature, we recognize 47 methods 
applied to detect epistasis, excluding specializations, tweaks, and merely paralleled 
methods[2,3]. The naive solution to tackle the problem of detecting epistatic interac-
tion is exhaustive exploration employing χ2 test, exact likelihood ratio test or entro-
py-based test for any module of multiple-locus. However, finding higher order (more 
than two loci) disease-related associations are extremely computationally costly to 
be feasible, particularly for a GWAS project with millions of SNPs. Instead of explic-
itly enumerating all possible combinations of k-locus, stepwise search approaches 
first select a subset of SNPs based on single-locus tests or model-free measures, then 
conduct tests for multi-locus interactions on the selected subset of SNPs. Similarly, 
stochastic methods use random sampling procedures to search the space of interac-
tions. Likewise, heuristics approaches adopt machine learning techniques, such as 
neural networks and predictive rules, to explore the space of epistatic interactions 
rather than explicitly enumerating and testing all the combinations of k-locus. Since 
non-exhaustive methods will exclude a substantial portion of SNPs, they may not be 
able to detect interactions involving loci with small or no marginal effects.
 To address the time-consuming issue and improve the accuracy as well, we 
provide a novel approach, named “Dynamic Clustering for High-order genome-wide 
Epistatic interactions detecting” (DCHE)[4]. DCHE uses an elegant dynamic clus-
tering scheme to maximize statistical significance for SNP combinations and ranks 
top ones as results. DCHE applies statistic tests on merged groups of genotypes 

determined by the dynamic clustering. 
Each grouped genotype category may 
share a similar effect associating with 
corresponding phenotypes. Truly dis-
ease-related joint genetic effects will win 
higher ranking scores with the condition 
that genotype combinations have been 
correctly clustered together. Systematic 
analyses on simulated two- and three-lo-
cus disease models datasets confirm that 
DCHE is more powerful in detecting 
epistatic interactions than some recently 
developed methods including TEAM[5], 
SNPRuler[6], BOOST[1] and EDCF[7]. Our 
analyses on two real genome-wide case/
control data sets, Age-related macular 
degeneration (AMD) and Rheumatoid 
arthritis (RA)[8] show that DCHE is pos-
sible for the full-scale investigations of 
multi-locus associations on large GWAS 
datasets, and it enriches many novels, 
significant high-order epistatic interac-
tions that have not been reported in the 
literature.
 For the second situation, we 
presented our follow-up study entitled 
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“DAM: A Bayesian Method for Genome-wide Associations 
Detecting on Multiple Diseases” at the 11th International Sym-
posium on Bioinformatics Research and Applications (ISBRA) 
in Norfolk, Virginia, US on June 9, 2015[9]. We designed and 
implemented a Bayesian inference method for Detecting ge-
nome-wide Association on Multiple diseases, named DAM, to 
deal with multiple cases in a GWAS dataset. DAM employs the 
Markov Chain Monte Carlo (MCMC) sampling based on the 
Bayesian Variable Partition (BVP) model[10], and also makes the 
use of a stepwise condition evaluation procedure to identify sig-
nificant disease(s)-specific interactions. It first produces a candi-
date set of SNPs by applying the BVP model, which can capture 
the disease-specific associations, with the Metropolis-Hastings 
(MH) algorithm. Following that, a stepwise association evalu-
ation procedure is engaged in detecting the genetic effect types 
and removing redundant SNPs in a module. Experiments on 
both simulated and two real GWAS datasets, i.e. Rheumatoid 
Arthritis (RA) and, Type 1 Diabetes (T1D), show that our meth-
od is feasible for identifying multi-locus interaction on multiple 
GWAS datasets, and it also reports some significant high-order 
epistatic interactions with specialties on various diseases. For 
instance, rs1230649 dwells within the coding region of the gene, 
PHTF1 (putative homeo domain transcription factor 1). PHTF1 
can recruit FEM1B to the endoplasmic reticulum membrane, 
and FEM1B belonging to the death receptor-associated family of 
proteins presents a significant role in mediating apoptosis[11]. The 
associated SNP with rs1230649 is rs11984645, which resides 
near the gene, MRPL15, mitochondrial ribosomal protein L15. 
By utilizing the LD plot from HapMap and the NCBI dbSNP, we 
found rs1230647 and MRPL15 are both inside a block caused 
by LD effect. MRPL15 is encoded by nuclear genes and helps in 
protein synthesis within the mitochondrion[12].
 A large number of SNPs genotyped in genome-wide as-
sociation studies poses a significant computational challenge in 
the identification of gene-gene interactions. During the last few 
years, there have been fast-growing interests in developing and 
applying computational and statistical approaches to detecting 
gene-gene interactions. By comparing to other popular tools, our 
methods show significant improvement in terms of the discrim-
ination power. Experimental results on real data prove that our 
two methods can discover remarkable novel biologically signif-
icant associations.
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