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Abstract
 With the infiltration of nanotechnology into our daily life, exposure to Tita-
nium Dioxide Nanoparticles (TNPs) has become inevitable. Many forms of exposures 
are capable of affecting the human health. Current research in the Titanium dioxide 
nanoparticle pathology field reveals that TNP is capable of inducing severe oxidative 
stress to in vivo and in vitro cells, which predominantly result in cellular apoptosis. 
This article summarizes the main pathways of TNP induced apoptosis and compares it 
with cigarette-smoke-induced senescence, in an attempt to identify the similarities and 
acknowledge knowledge gaps to question the integrity of the TNP cytotoxicity studies 
conducted. The viable cells in the studies reviewed are not defined, and may provide a 
direction for future TNP toxicology studies.
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Introduction

 TNPs (φ < 100 nm) are widely used in photocatalyst 
cleaning of water and air[37], cosmetics, toothpaste, sunscreen, 
and pharmaceuticals[38]. While TiO2 itself may have proved to 
hold a very broad future in material science and relevant in-
dustries, nano-sized TiO2 particles have been proved to induce 
greater toxicity than larger particles due to its more active chem-
ical properties, greater surface area and easier cell membrane 
penetration[39,40] and extensive studies have proved that TNPs 
are capable of inducing apoptosis in various types of cell cul-
tures and live animal tissue cells. The molecular mechanism 
and processes of the cellular apoptosis induced by TNPs remain 
under-studied. However, multiple pathways have been observed 
and specified. These regulation pathways include:
1. Upregulation of caspase -3 and -9 [2,4,5,26-32.,41-44] and p53[2-5,29] 
activation, upregulation of the BAX/Bcl-2 ratio[2,4,5,21,27-31,33,44-47] 
and inflammatory kinases[26,34,35,48,49] in the mitochondrial (intrin-
sic) pathway.
2. Caspase-8 production, Bid activation[27,34] and death receptor 
Fasactivation[28,50-52] in the death receptor (extrinsic) pathway.

 This article summarizes the defined pathways of TNP 
induced apoptosis and compares it with the senescence process 
of cells (cigarette smoke as the stress factor due to its universal-
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ity), hence providing guidance for future research and contribute 
to a more comprehensive understanding of TNP cytotoxicity re-
garding characterization of the overall response of the cell econ-
omy to TNP cytotoxicity.

Intrinsic (mitochondrial) pathway
 The impairment of energy metabolism has been exten-
sively implicated in cellular pathologies. Dysfunctional mito-
chondria is a major factory of ROS production. In the studies of 
TNP pathologies, researchers have identified the impairment of 
mitochondria as a major factor of apoptosis. However, the spe-
cific mechanism of  ROS production resulting from TNP stress 
remains understudied and awaits further investigations.

1. DNA damage and p53 upregulation
 The involvement of tumour suppressor p53 in TNP in-
duced apoptosis has been extensively studied in recent years. 
DNA damage resulting from TNP induced oxidative stress leads 
to the activation of p53[2-5,29,44,53,54], which triggers cell cycle ar-
rest to prevent proliferation of cells with damaged DNA and 
ensure genomic stability[55]. In response to apoptosis inducing 
stress, p53 rapidly translocates to the mitochondria, where it 
interacts with the Bcl-2 family members, consequently upreg-
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ulating the pro-apoptotic proteins which include Mitochondrial 
Outer Membrane Permeability (MOMP) effectors BAX and Bak 
(formation of lipid pores on the mitochondria outer membrane), 
apoptosis activators tBid and Bim (stimulation of BAX and Bak 
oligomerization), and anti-apoptotic protein inhibitor Puma, 
Noxa, and Bad (inhibition of anti-apoptotic Bcl-2 family mem-
bers)[55,56].  

2. ROS production
 The production of ROS has been regarded as the ini-
tiator of the mitochondria pathway of TNP induced apoptosis. 
Many researchers have made observations of the pro-apoptotic 
process. It is speculated that the TNPs induce the production of 
ROS through disrupting the natural redox (reduction-oxidation) 
equilibrium[28]. The specific mechanisms of this process remains 
unknown, however, speculations could be made in reference to 
studies based on the cytotoxicity of other nanomaterials. Kee 
Woei Ng., et al. proposed in their study on Zinc Oxide (ZnO) 
Nanoparticle (ZNP) cytotoxicity that ZnO produces Zn2+ upon 
intracellular and extracellular dissolution[10]. The Zn2+s induce 
the production of ROS through an unknown mechanism. Molec-
ular analysis has identified complex I and III as the main genera-
tors of free radicals in the electron transport chain in hyperactive 
mitochondria[57]. Researchers have confirmed that the oxidative 

stress induced by metallic anions results in ROS production, but 
the specific mechanism awaits further definition. With the capa-
bility of snatching electrons away from biomolecules[57], ROS 
are capable of inflicting damages such as cell and mitochondria 
membrane lipid peroxidation[4,5,29,45,58-67] and increased permea-
bility of the outer mitochondrial membrane[4,27,68-72]. Yongli Shi., 
et al. demonstrated a highly relevant relationship between the 
amount of ROS production, apoptosis intensity, and cell viability 
in BEAS-2B cell lines (human bronchial epithelium cell culture) 
treated with TNPs (Figure.1). Statistical analysis indicates that 
TNP exposure intensity, ROS production, apoptosis rate (Napop-

totic% ≈ 1 ˗ Nviable %) are engaged in a relationship definable with 
function (Figure.2). However, the state of the cells classified to 
possess viability wasn’t described. Similar findings can be found 
in the work of Jinshun Zhao., et al where TNP exposure was 
introduced to JB8 cell culture[27]. As it is presented in the figures 
(figures 3,4 5), while a large proportion of BEAS-2B cells exhib-
ited apoptosis (reaching 30 % with the increase of TNP exposure 
intensity), a greater number of cells maintained viability, which 
contradicts the theory that epithelial cells respond to stress pri-
marily via apoptosis[20,36]. Furthermore, it is unclarified what type 
of viable state the viable cells exhibit and the description of the 
whole cell economy may be of great importance in explaining 
and defining TNP toxicity.

Figure 1: Overall process and relationship between different cellular pathologies relevant to this review.
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Figure 2: Yongli Shi et al. presented this figure in their papers to clarify their observations of TNP exposure affecting BEAS-2B cellular respons-
es(2). (A) Measurement of apoptotic cells (YP staining), ROS generation, and viable cells (MTT assay) in cells treated with different concentra-
tions of TNP for 24 hrs. (B) DLS assay for TNP. (C) Element analysis of TNP.

Figure 3: Statistical analysis reveals that the cellular responses (in BEAS-2B cells) to TNP stress is in a linear relationship. It is noticeable that cell 
death occurs upon the administration of TNP stress, even at a very low intensity. However, the cells possessing viability have not been character-
ized. The trend line of ROS production, apoptotic cell count, and viable cell count related with TNP stress intensity are referred to as y(1), y(2), 
and y(3), respectively.
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Figure 4: Similar to the results presented by Yongli Shi et al., Jinshun Zhaoet al. demonstrated the same trend in JB8 cells. However, the JB8 cells 
were more sensitive to TNP stress, and have been observed with a higher occurrence rate of apoptosis compared to that of the BEAS-2B cell lines 
under a lower intensity of TNP exposure. Additionally, the occurrence rate of cellular response was more abrupt and un-foreseeable compared to 
that exhibited by the BEAS-2B cells (Figure. 4). (A) MTT assay was conducted.

Figure 5: Statistical analysis reveals that the sensitiveness of JB8 cells to changes in TNP exposure intensity fluctuates across a relatively smaller 
range (compared with the analysis done in Figure.2). The cause of this difference wasn’t defined.



Titanium Dioxide Nanoparticles Induced Cytotoxicity

J Med Chem Toxicol    |   volume 2: issue 266He Wang., et al.

3. Lipid peroxidation and increased membrane permeability
 A major damage induced by TNP induced ROS produc-
tion is lipid peroxidation of the cellular and mitochondrial mem-
branes. Lipid peroxidation of mitochondrial membrane leads to 
dysfunctions of the mitochondria, and uncontrolled opening of 
the outer membrane transition pores have been considered as an 
important pro-apoptotic response. Uncontrolled opening of the 
transition pores is a major cause for increased permeability of 
the mitochondria, translocation of cytosolic apoptotic proteins 
into the mitochondria, and leakage of mitochondrial contents 
into the cytosol[54]. Researchers have observed the increase of 
cytochrome c in the cytosol[2,27,43,45,50,71,73,74]. This was mainly a 
result of peroxidation of membrane lipid and phospholipid Car-
diolipin (CL), which binds with cytochrome c and anchors it 
to the inner mitochondrial membrane to participate in electron 
transport[57,73]. In earlier studies, Paradies G., et al. demonstrated 
that mitochondrial ROS induces a CL decrease, leading to de-
crease of cytochrome c oxidase, which is reliant on the presence 
of CL. This was repairable with added CL, but not with addition 
of peroxidised CL nor antioxidant enzymes such as Superox-
ide Dismutase (SOD) and catalase[75]. Once translocated into 
the cytosol, cytochrome c is capable of binding to the critical 
protein Apaf-1, which then binds to and activates caspase-9[54], 
consequently resulting in activation of caspase-3 and apoptosis 
induction[2,27,28].

Extrinsic (death receptor) pathway

1. The Fas/caspase-8 pathway
 The Fas-Fas ligand (FasL) signalling is an important 
member of the extrinsic apoptosis pathways. In the normal cell, 
Fas-FasL signalling pathway acts to initiate apoptosis when 
FasL is produced by T cells and activates the Fas death receptor 
on target cells, with leads to the activation of the caspase-3 and 
caspase-8[24]. Fas death receptor activation was observed by Ki-
Chun Yoo., et al. in different kinds of human cell lines treated 
with TNPs[28]. However, Fas ligand production was not men-
tioned, and ROS was implicated in the activation of Fas death 
receptors instead. However, no description to how ROS medi-
ates Fas activation has been given, and further research awaits 
initiation.

2. Tumour necrosis factor-α induced cell death
 The TNF-α is a cytokine that is associated with se-
vere inflammation and triggers necrosis-like apoptosis mainly 
in endothelium and lymphoid tissues[54]. Apart from being able 
to trigger caspase-8 activation, it is also capable of binding 
with its specific death receptor and initiating caspase-indepen-
dent apoptosis. Researchers have confirmed the role of TNP in 
TNF-α induction in various kinds of human cells[26,35,47,76,77]. This 
may provide an explanation that although TNP was proved to 
predominantly induce apoptosis, inflammation and even em-
physema-like pathologies was also observed in TNP treated 
cells[26,31,34,37,47,71,78,79].

An attempt to adapt and survive – inflammatory responses
 During research  on TNP cytotoxicity, Eun-Jung Park., 
et al. observed the upregulation of a series of inflammatory fac-
tors including interleukin- (IL-) 1, 6, 8, and TNF-a and CXC mo-
tif ligand 2 (CXCL-2) in TNP treated human bronchial epithelial 
cells[26]. During their experiments, IL-8 upregulation was pre-

vented with the inhibition of the p-38 Mitogen-Activated Protein 
Kinase (p38-MAPK) and Extracellular Signal-Regulated Kinase 
(ERK) pathway, which provides evidence for the activation of 
these two inflammatory pathways in the TNP induced apoptosis 
process. What should be noticed is that MAPK and ERK, along 
with the c-Jun NH2-terminal kinase (JKN1) and Apoptosis Sig-
nal-Regulating Kinase 1 (ASK1) are inflammatory kinases that 
are implicated in anti-apoptotic mechanisms[54]. In addition, Jin 
Chen., et al. also observed NF-κB upregulation in TNP treated 
hepatocytes[34]. Among the inflammatory factors mentioned, al-
though the MAPK and NF-κB pathways have also been impli-
cated in cell survival or cellular senescence, no detections of cel-
lular senescence have been made as a cellular response to TNP 
cytotoxicity. It could be observed that TNP treated cells share 
some similar characteristics with senescent cells, and are proved 
to bepro-inflammatory in the studies. Whether this can lead to 
carcinogenic responses awaits further investigation.

A brief review on stress induced premature senescence
 Senescence is a state of the cell characterized by en-
tering an irreversible cell cycle arrest. Cells under the senescent 
state exhibit a high secretory activity of inflammatory chemo-
kines known as the senescence associated secretory phenotype 
(SASP)[80]. Although multiple pathways of senescence initiation 
have been observed, the specific explanation for how senescence 
is molecularly mediated still remains unknown. What should be 
noticed is that the molecular responses that have been observed 
be induced by TNPs are also associated with cellular senescence 
establishment.

The p53 related pathway
 Tumour suppressor p53 has been reported to be great-
ly associated with senescence establishment in cigarette smoke 
exposure experiments. The upregulation of p53 was reported by 
researchers as the result of DNA damage[6,8,9,11,12,14-1620,21]. How-
ever, the downstream factors of the p53 pathways is completely 
different in comparison with the p53 related pathways in apop-
tosis induction.

1. The p53-Parkin interaction
 In the normal autophagic activities of the cell, the 
PINK1-Parkin (or PARK2) pathway is implicated in the clearance 
of damaged mitochondria. PINK1 immobilizes to mitochondria 
with depolarized membrane, and induces the recruitment of Par-
kin to the damaged mitochondria’s outer membrane[14,16]. There, 
Parkin initiates the degradation of mitofusin-2 (Mfn2, a protein 
implicated in the fusion of mitochondria), therefore preventing 
mitochondrial fusion and initiating the formation of autophago-
somes, which triggers mitophagy. During exposure to cigarette 
smoke, Tanveer Ahmad., et al. observed that the targeted auto-
phagy of damaged mitochondria (mitophagy) was greatly im-
paired due to the interaction between p53 and Parkin, thus inhib-
iting the translocation of Parkin to damaged mitochondria. This 
was supported by his observations of perinuclear accumulation 
of damaged mitochondria after cigarette smoke treatment, which 
ultimately resulted in enhancement of senescence[14]. This may 
be one of the sources of the irreversibility and progressiveness 
of pulmonary-inflammation-related and premature-ageing-relat-
ed diseases.



2. The ATM/ATR-p53-p21-pRb pathway
 In the majority of somatic cells, DNA Damage Re-
sponse (DDR) activates the sensor kinases ATM/ATR, which re-
sults in phosphorylation of multiple downstream players of the 
signalling cascade, including H2AX histone at the site of DNA 
breaks, and transcription factor p53. The former results in for-
mation of γ-H2AX foci, which is implicated in the recruitment 
and anchoring of DDR players. The latter results in transcrip-
tion of various genes including p21 and GADD45, which are 
capable of inhibiting cyclin-dependent kinases. Then, resulting 
from effects of various stressors, initiation of the p38/MAPK 
cascade activates the p16-pRB (retinoblastoma protein). As in-
hibitors of cyclin dependent kinase, p21 and p16 mediates the 
hypophosphorylation of RB, which binds to transcription factor 
E2F and affects cell cycle progression[15,81,82]. Similarly, Yi Luo., 
et al. observed that autophagy is capable of inducing senescence 
via p21 through a p38-MAPKα dependent pathway. The above 
observations contribute to the explanations of the inflammation 
observed in TNP treated cells, and provides support to speculate 
that senescence is a great possibility of an attempt at cell surviv-
al in TNP treated cells given the conditions are right.

Inflammatory induction and carcinogenic effects of prema-
ture ageing
 Senescent cells possess a degree of metabolic and tran-
scriptional vitality, therefore capable of affecting the micro-en-
vironment. Furthermore, although cellular senescence have 
been originally regarded as an anti-tumour and cytoprotective 
response of the cell, recent research reveals that chronic prema-
ture senescence in the cell economy and tissues may be carcino-
genic through secretion of the SASP[80]. Jean-Philippe Coppé., et 
al. concluded in their research that the SASP could be divided 
into four categories, including soluble factors, soluble or shed 
receptors or ligands, non-protein soluble factors, and insolu-
ble factors. Among those regulations, the upregulation of cer-
tain interleukins (e.g. IL-1, -6, -8), inflammatory cytokines and 
chemokines (e.g. PlGF, CXCL1, CXCL5, CCL2/MCP-1, CCL3/
MIP-1) and ROS were similar to that of the regulation pattern 
of TNP induced apoptosis[37]. Apoptosis in addition, exhibited a 
high production of apoptotic factors such as caspases[27]. 
 In terms of inflammation, the MAPK and NF-κB path-
ways are also a great contributor in the inflammatory effects of 
premature ageing.
 Although researchers claim that senescence and apop-
tosis may be different responses of the cells reacting differently 
to different levels of stress exposed to different cell types[20,36], 
they have also proposed that senescence is a cytoprotective 
response of the cell initiated in chronic stress to maintain cell 
economy and prevent over-loss and damage of the tissue from 
apoptosis.  Eleni Georgakopoulou., et al. proposed a model for 
carcinogenesis, in which stroma cells are not directly affected 
by the stressors acting on the epithelium, but rather identifies 
cancer as a wound that does not heal. While fibroblasts transient-
ly proliferate to maintain structural stability and cell economy, 
persistent lesions cause stroma fibroblasts to become senescent 
in order to prevent fibrosis. However, no research have clearly 
proved whether this model suits the TNP pathologies.

Knowledge Gap and Discussion
 It is reasonable to conclude that the cellular response 
described in previous research on TNP toxicology was pre-
dominantly apoptosis. However, the changing rate of the apop-
tosis proportion trended towards zero after a certain intensity 
of stress, potentially meaning a proportion of the counted cells 
are capable of maintaining viability. We know that cells under-
gone stress can exhibit different kinds of “being viable”, such 
as cell survival, dormancy and senescence. How the viable cells 
responded to TNP cytotoxicity wasn’t analysed, and the differ-
ence of possibilities may greatly affect the systematic definition 
of TNP toxicology, providing guidance and reference for future 
nanoparticle toxicology studies and pharmaceutical applications 
of nanoparticles.
 Secondly, current research on TNP toxicology lacks 
comparison of key intracellular senescence and apoptosis bio-
molecules. Specifically, current research in the field doesn’t 
discuss the potential interactions between different cellular re-
sponses in the same tissue economy, but rather individually dis-
cuss one as the predominant cellular response resulting from a 
specific type and intensity of stress. Observations of pre-apoptot-
ic intracellular molecule regulations in senescence induction and 
pre-senescence intracellular molecule regulations in apoptosis 
induction may provide a broader view in understanding how the 
cell decides the way out. For example, some researchers report-
ed that upregulation of induced autophagic activity in senescent 
cells resulted in the induction of apoptosis, while downregula-
tion of induced autophagy and upregulation of baseline autoph-
agy contributed to the establishment of cellular senescence and 
SASP secretion[8,16,83]. Contrarily, Hongmei Dai., et al. proposed 
that the PINK1-Parkin-mediated mitophagy alleviates apoptosis 
in human SH-SY5Y cell lines treated with chlorpyrifos[84].
 In conclusion, although extensive work has been con-
ducted to study TNP cytotoxicity, further investigation that is 
based on a comprehensive mapping of the cell economy and the 
associated cellular responses is necessary.
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