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Introduction

	 Technology	refers	to	the	application	of	knowledge	for	human	benefits.	Nanotechnology	has	been	defined	as	‘the	under-
standing and control of matter at dimensions of roughly 1 - 100 nanometers, where unique phenomena enable novel applications’[1]. 
Nanotechnology is unique in the sense that it enables us to observe, synthesize and manipulate things at the nanometer scale[2]. The 
word nano	is	derived	from	the	Greek	word	meaning	‘dwarf’	and	a	Nanometer	(nm)	is	an	SI	(Système	International	d’Unités)	unit	
of length. In dimension terms nanometer is 10−9 or a distance of one-billionth of a meter[3,4]. Nanotechnology is not restricted to one 
specific	area,	but	represents	a	variety	of	disciplines	ranging	from	basic	material	science	to	personal	care	applications.	Nanotech-
nology	is	a	techno-scientific	platform,	whereby	a	range	of	existing	techno-scientific	disciplines	like	physics,	chemistry,	biology,	
biotechnology, information technology and engineering are able to shift down to the molecular level[5]. Nanobiotechnology is the 
combination of nanotechnology with biotechnology which helps us to design and produce biological materials or devices with spe-
cific	function	by	modifying	processes	occurring	at	the	nanoscale	level[6]. The expanding potential of nanotechnology stems from its 
interdisciplinary	nature,	cutting	across	fields	of	science,	engineering,	technology,	and	their	potential	applications[4,7]. Nanotechnol-
ogy	has	stimulated	new	research	and	innovative	thinking	throughout	the	scientific	world.	The	rapid	rise	of	nanotechnology	has	led	
some technologists to call it the next industrial revolution.
 Although nanoparticles have been used since a very long time, the primary concept of nanotechnology was presented on 
December	29,	1959	by	Richard	Feynman	during	the	annual	meeting	of	the	American	Physical	Society	in	a	lecture	entitled	‘There’s	
Plenty	of	Room	at	the	Bottom’.	The	term	nanotechnology	was	coined	in	the	year	1974	by	Norio	Tanigutchi,	professor	at	Tokyo	
Science	University,	who	referred	first	used	this	term	while	describing	precision	manufacturing	at	the	scale	of	nanometers.	Nanoma-
terials	are	of	great	scientific	interest	as	they	bridge	the	gap	between	bulk	materials	and	atomic	or	molecular	structures.
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Abstract
 
 Nanotechnology	has	been	defined	as	the	understanding	and	control	of	matter	at	
dimensions of roughly 1 - 100 nanometers. Nanotechnology is still in its infancy but some 
of its potential health and safety hazards have been with us for a long time since extremely 
small particles can pose threats to health and the environment. Due to widespread use in 
consumer	products	it	is	expected	that	nanomaterials	will	find	their	way	into	aquatic,	ter-
restrial and atmosphere environments. The chemical and physical methods for production 
of nanomaterials are expensive, labor-intensive, and potentially hazardous to the environ-
ment. There is an urgent need to develop environmentally friendly methods of synthesis 
of nanoparticles through techniques that are not only safe for the environment but cost 
effective	 as	well.	Green	nanotechnology	 aims	 to	 not	 only	 contribute	 nanoproducts	 that	
provide solutions to environmental challenges, but also to produce nanomaterials without 
deteriorating the environment or human health.
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Imaging Techniques
	 A	number	of	techniques	are	available	for	detecting,	measuring	and	characterizing	nanoparticles.	Different	techniques	will	
require	different	types	of	sample	like	an	aerosol,	a	suspension	or	liquid	sample.	Microscopes	are	instruments	designed	to	produce	
magnified	images	(visual	or	photographic)	of	small	objects.	A	modern	light	microscope	had	a	magnification	of	about	1000x	and	
enabled	the	eye	to	resolve	objects	separated	by	200	nm.	With	the	popularization	of	nanotechnology,	an	urgent	need	arose	for	the	
development	of	tools	dedicated	to	the	characterization	of	the	nano-objects	and	nano	structured	materials[8]. Advances in various 
imaging	technologies	in	the	past	decades	enabled	researchers	to	study	biological	processes	at	different	levels	of	resolution.	It	was	
discovered	in	the	1920s	that	accelerated	electrons	travel	in	straight	lines	and	have	wave	like	properties,	with	a	wavelength	that	is	
about	100,000	times	shorter	than	that	of	visible	light.	It	was	realized	that	electric	and	magnetic	fields	could	be	used	to	shape	the	
paths	followed	by	electrons.	Ernst	Ruska	and	Max	Knoll	combined	these	characteristics	and	built	the	first	Transmission	Electron	
Microscope	(TEM)	in	1931.	TEM	enabled	the	instrument’s	user	to	examine	fine	detail	of	objects	which	were	tens	of	thousands	times	
smaller	than	the	smallest	resolvable	object	in	a	light	microscope.	Electron	Microscopy	(EM)	is	capable	of	visualizing	whole	cells	as	
well as individual biomolecules, their sub-molecular structure, and individual atoms, but is limited by the high vacuum inside the 
EM instrument which causes the biological specimen to dehydrate[9]. 
	 Solid-state	Nuclear	Magnetic	Resonance	(NMR)	spectroscopy	and	X-ray	crystallography	have	been	developed	to	have	a	
greater structural insight into molecules and better understanding of non-covalent interactions and atomic bonds[7].	X-ray	crystal-
lography,	the	first	method	for	structure	determination	of	single	biomolecules,	has	become	the	most	popular	method	for	characteriz-
ing atomic structure of bio-macromolecules, ranging from proteins to entire virus entities and has the sensitivity down to 1 nm[10]. 
However,	 for	both	NMR	and	X-ray	crystallography	 there	 is	a	 theoretical	size	 limit	 for	 the	sample	 to	be	studied,	which	renders	
the structure determination of large supramolecular assemblies unlikely[7].	Recently,	 the	Scanning	Probe	Microscope	(SPM)	has	
opened completely new avenues for analyzing biological material in its aqueous environment and at a resolution comparable to that 
achieved by electron microscopy[11,12].	The	two	major	kinds	are	the	Atomic	Force	Microscope	(AFM)	and	the	Scanning	Tunneling	
Microscope (STM). SPM enables resolution of features down to about 1 nanometer in height, allowing imaging of single atoms[13]. 
The	SPM	has	several	advantages	such	as	the	ability	to	measure	small	local	differences	in	object	height	and	no	requirement	of	a	par-
tial vacuum. Specimens can be observed in air at standard temperature and pressure, or while submerged in a liquid medium. Hence, 
the SPM has become a method of choice for directly correlating structural and functional states of biological matter at sub-molecular 
resolution[14-16].

Hazards of Nanotechnology
 Nanotechnology is still in its infancy but some of the potential health and safety hazards have been with us for a long time 
since extremely small particles can pose threats to health and the environment. There are numerous exposure pathways (both prima-
ry	and	secondary)	stemming	from	greater	use	of	nanotechnology	in	different	sectors	that	lead	to	occupational	exposure[17]. Depend-
ing	on	the	nanomaterial	and	its	specific	application,	the	exposure	can	occur	via	inhalation,	dermal,	oral	and	parenteral	routes[18,19]. 
The toxicity of nanoparticles is mass-dependent and also dependent on its physical and chemical properties that are not routinely 
accounted for in toxicity studies[17,20-22].	However,	despite	 significant	progress	 in	 recent	years,	 the	biological	 and	environmental	
pathways taken by nanomaterials remain largely unexplored[17-20,23]. The potential health impact of a material is gauged by its toxic-
ity and by the amount of material that is able to reach the target organs within the body[24]. There is a big perception that increased 
exposure of nanotechnology researchers, workers, and consumers to potentially hazardous materials could cause adverse health 
effects.	Research	on	the	biological	impacts	of	nanomaterials	is	primarily	based	on	information	obtained	from	controlled	lab	studies	
of cell cultures and model organisms exposed to high concentrations of nanomaterials in the culture media. However, these studies 
are of only limited utility in predicting the impacts of engineered nanoparticles under likely environmental exposure scenarios since 
exposure	in	an	ecosystem	occurs	at	a	much	lower	concentration	that	is	both	physically	and	chemically	more	complex	than	a	flask	or	
petri dish[25].	Although	there	are	no	confirmed	reports	of	human	ailments	ascribed	to	nanomaterials	till	now,	experimental	evidences	
indicate that nanomaterials have the potential to initiate adverse biological responses which can lead to toxicological outcome[26].
 Experiments at cellular levels and in animal models have shown that some types of nanoparticles are capable of generating 
pro-inflammatory	and	pro-oxidative	effects	 that	could	 lead	 to	respiratory	pathology[27-32]. Several studies are available that point 
towards the pulmonary toxicity of metal nanoparticles[33], cationic nanoparticles[34,35] and carbon nanotubes[36,37]. Although adverse 
cardiovascular	effects	of	engineered	nanomaterials	in	humans	have	not	been	reported,	some	experimental	studies	have	shown	that	
nanomaterials could produce adverse cardiovascular impacts. Engineered nanoparticles may penetrate the pulmonary epithelial 
cell barrier, enter the systemic circulation, and gain access to the cardiovascular system[30]. Carbon nanoparticles like single walled 
nanotubes, multi walled nanotubes, and carbon black nanoparticles have been reported to induce human platelet aggregation in vitro 
and promote arterial thrombosis in rodents[38].	Ferric	oxide	nanoparticles	could	also	exert	anticoagulant	effects	by	lengthening	of	
prothrombin time and activation of partial thromboplastin time in rats[39].
	 Nanomaterials	also	present	a	significant	problem	due	to	their	chemistry,	size,	and	possible	non-biodegradable	composition	
due to which they will rapidly distribute throughout the environment and bioaccumulate with consequences that are unknown today. 
Due	to	widespread	use	in	various	consumer	products	like	creams,	sunscreens	and	lotions	it	is	expected	that	nanomaterials	will	find	
their way into the biosphere where their fate and behaviour are largely unknown[40]. There is still very little research into the potential 
negative impacts of nanotechnology on the environment. There are ample opportunities for nanomaterials to interact with the envi-
ronment	from	their	initial	production	to	final	disposal[41]. There is a possibility that interaction of nanoparticles with the environment 
will	have	deleterious	effects.	Preliminary	investigations	on	environmental	concerns	with	respect	to	nanoparticles	have	primarily	

J Nanotech Mater Sci  |  volume 3: issue 1

Nanotechnology

www.ommegaonline.org 18

http://www.ommegaonline.org


revolved around fullerenes which have been reported to be toxic to aquatic life forms[42], leading to speculation that nanomaterials 
may disrupt ecosystems[40-43]. However, several researchers have debated these results. 

The Need for Green Nanotechnology
 The nanomaterials have high surface volume ratio due to their extremely small size which makes the physicochemical 
properties	of	nanoparticles	containing	materials	quite	different	to	those	of	the	bulk	materials.	Also,	the	optical,	electronic,	and	cata-
lytic	properties	of	nanoparticles	are	greatly	influenced	by	their	size,	shape,	and	crystal	structure[44]. Due to immense demand, there 
is	an	accelerated	development	of	nanomaterials	by	various	methods.	From	inception	nanoparticle	synthesis	has	been	done	through	
two approaches[45]	(Figure	1):

Figure 1: Bottom-up and top-down approaches for nanoparticle production (Iravani 2011)[45].
(A) Top down approach- breakdown method by which a big component is broken down into smaller ones of desired size, and
(B) Bottom up approach- buildup method that starts from atoms and is based on atomic transformations and molecular condensation.

 The bottom up approach is mainly divided into gaseous phase methods and liquid phase methods. The top down method is 
further	subdivided	into	the	wet	and	dry	(grinding)	methods.	The	dry	method	is	cost	effective	but	mono-dispersity	and	surface	chem-
istry control remains a drawback. Using the wet process it is possible to prevent condensation of nanoparticles and we can obtain 
highly dispersed nanoparticles. However, both the wet and dry methods of nanoparticle production are not environmentally friendly. 
Their drawbacks include contamination from precursor chemicals, use of toxic solvents, and generation of hazardous by-products. 
Thus, these production methods are expensive, labor-intensive, and are potentially hazardous to the environment and living organ-
isms. There is an urgent need to develop environmentally friendly methods of synthesis of nanoparticles through techniques that are 
not	only	safe	for	the	environment	but	cost	effective	as	well.

Green Nanotechnology
 Green nanotechnology refers to the application of green chemistry and green engineering principles to nanotechnology 
to evolve methods, materials and techniques for diverse applications like generating energy to non-toxic cleaning products. Green 
nanotechnology aims to not only contribute nanoproducts that provide solutions to environmental challenges, but also to produce 
nanomaterials without deteriorating the environment or human health. Green nanotechnology is likely to result in manufacturing 
processes	that	are	more	environmentally	friendly	and	more	energy	efficient.

There are two key aspects to green nanotechnology[46]. 
(i) Involves nano products that provide solutions to environmental challenges, and
(ii) Involves producing nanomaterials and products containing nanomaterials with a view toward minimizing harm to human health 
or the environment.
 Green nanotechnology aims to develop sustainable environmentally-sustainable manufacturing processes and solutions to 
address burning issues like contamination of aquatic bodies, energy shortages and other areas of environmental concern[47]. Green 
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nanotechnology	‘sustains’	the	fourth	goal	of	the	National	Nanotechnology	Initiative[1]	i.e.	‘supporting	the	responsible	development	
of nanotechnology’ by following existing principles of green chemistry and green engineering. It enables nanotechnology to develop 
in a more responsible and sustainable manner by minimization or elimination of harmful materials used in the synthesis of nano-
materials or by using the products of nanotechnology to regulate these pollutants in the environment[48]. Green nanotechnology is a 
sustainable approach to nanotechnology from design to production and product use to disposal or recycling. Thus, the eco friendly 
approach of green nanotechnology limits the risk of producing nanomaterials and minimizes the production of toxic intermediates 
and end-products[48]. Green nanotechnology also aims to make current manufacturing processes for non-nano materials and products 
more environmentally friendly.

Components of Green Nanotechnology

[A] Synthesis of nanoparticles
 This forms the most important component of green nanotechnology. As described previously, synthesis of nanoparticles 
is carried out by several physical and chemical methods. Although chemical and physical methods may successfully produce pure, 
well-defined	nanoparticles,	these	are	quite	expensive	and	potentially	dangerous	to	the	environment[49]. There is an urgent need to 
develop environmentally benign processes in place of synthetic protocols involving toxic ingredients. Use of biological organisms 
or their biomass could be an alternative to chemical and physical methods for the production of nanoparticles in an eco-friendly 
manner[49-51]. Moreover, the coating of biological molecules on the surface of nanoparticles makes them biocompatible in compari-
son with the nanoparticles obtained by chemical methods[52-54].	The	biocompatibility	of	biologically	synthesized	nanoparticles	offers	
very	interesting	applications	in	biomedicine	and	related	fields[55].
	 A	great	deal	of	effort	has	been	put	into	the	biosynthesis	of	metal	nanoparticles	using	different	microbes	primarily	bacteria	
and fungi (Table 1). However, green synthesis of various nanoparticles has also been achieved using lower plant forms like algae 
(Table 2) as well as angiosperms (Table 3). Considering the vast potentiality of microbes and plants as sources, the biological syn-
thesis can serve as a green technique for the synthesis of nanoparticles as an alternative to conventional methods.

Table 1: List of nanoparticles synthesized by microorganisms
Microbes Nanoparticle Reference
Bacteria
Aeromonas hydrophila Zinc oxide Jayaseelana et al. (2012)[56]

Bacillus mycoides Titanium dioxide Aenishanslins et al. (2014)[57]

Geobacillus sp. Gold Correa-Llantén	et	al.	(2013)[58]

Klebsiella pneumonia Selenium Fesharaki	et	al.	(2010)[59]

Fungi
Alternaria alternata Gold Sarkar et al. (2012)[60]

Aspergillus flavus Titanium dioxide Rajakumara	et	al.	(2012)[61]

Fusarium oxysporum Cadmium-selenide Kumar	et	al.	(2007)[62]

Neurospora crassa Platinum Castro-Longoria et al. (2012)[63]

Table 2: List of nanoparticles synthesized by algae
Algae Type of nanoparticle Reference
Bifurcaria bifurcata Copper oxide Abboud et al. (2014)[64]

Caulerpa racemosa Silver Kathiraven	et	al.	(2015)[65]

Chlorella vulgaris Gold Annamalai and  Nallamuthu (2015)[66]

Padina gymnospora Gold Singh et al. (2013)[67]

Sargassum muticum Gold Namvar et al. (2015)[68]

Table 3: List of nanoparticles synthesized by angiosperms
Angiosperm Type of nanoparticle Reference
Aloe vera Gold, Silver Chandran et al. (2006)[69]

Azadirachta indica Gold, Silver Shankar et al. (2004a)[70]

Eucalyptus oleosa Silver Mahdi et al. (2015)[71]

Murraya koenigii Silver Christensen et al. (2011)[72]

Sesuvium portulacastrum Silver Nabikhan et al. (2010)[73]
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[B] Solar cells and nanotechnology
 There has been a gradual shift towards development of renewable energy since current fossil fuel usage is unsustainable 
and associated with greenhouse gas production. Nanoscale systems have allowed new ways of approaching solar energy conversion 
for electricity generation or production of fuels[74]. Nanotechnology is being used to provide improved performance coatings for 
solar	 thermal	and	photovoltaic	panels.	Features	like	hydrophobic	and	self-cleaning	properties	create	more	efficient	solar	panels,	
especially	during	inclement	weather.	Nanoscale	objects	have	immense	potential	to	revolutionize	the	conversion	of	solar	energy	by	
enabling	highly	efficient	and	low-cost	devices[74]. Quantum dot solar cell, nano wire solar cell and mesoscopic solar cell are some 
types of cells that are being explored. Nanostructured solar cells having long-term stability and low cost can go a long way in pro-
moting human welfare in the coming decades.

[C] Environment remediation
 Nano remediation i.e. the use of nanomaterials for environmental remediation is being explored to treat wastewater, ground 
water,	soil,	sediment	and	other	environmental	contaminants.	Nanotechnology	offers	 the	potential	of	using	nanomaterials	for	 the	
treatment of aquatic bodies and other landscapes contaminated by xenobiotics. 
 Nanotechnology can exploit the solar energy as well as the recent advances in nano-engineered titania photo catalysts and 
membranes for the destruction of potentially harmful compounds and novel emerging pollutants like pharmaceuticals, toxins and 
hormones which can have long lasting environmental and health impact[75]. This can ensure availability of clean water at low cost. 
Nanotechnology can help to combat climate change by bringing new energy sources (developing low-carbon forms of energy) to the 
market	and	reducing	greenhouse	gas	emissions.	Five	areas	where	nanotechnology	can	make	a	significant	difference	with	respect	to	
environmental remediation are: 
(a)	Development	of	fuel	additives	that	will	increase	the	efficiency	of	diesel	engines,
(b) Development of photovoltaic technology for solar cells,
(c) Hydrogen economy and fuel cells,
(d) Batteries and super capacitors for energy storage, and 
(e)	Improved	insulation	for	houses	and	offices.

Facilitating Green Nanotechnology
	 Emerging	governance	strategies	and	mechanisms	should	aim	to	ensure	that	effective	oversight	mechanisms	are	in	place	to	
foster the responsible development of nanotechnology[46]. Stakeholders should consider undertaking the following steps to foster the 
development of green nanotechnology[46]:
(i) Develop a life-cycle assessment appropriate for green nanoproducts.
(ii)	Establishing	specific	standards	for	green	nanotechnology	so	that	such	products	can	be	branded	as	‘green	nano’.
(iii) Provide tax and business incentives to innovators to take care of the cost of commercializing a product and the shortage of 
investment capital which is likely to encourage application of green nanotechnology
(iv) Extended patent term protection for green nanoproducts.
(v) Provide more resources for green nano research in the form of funding and improvement in public-private partnership opportu-
nities.
(vi)	Establish	a	Design	for	the	Environment	(DfE)	award	for	‘Green	Nano’	category.
(vii) Convening a forum to discuss, develop and implement green nano principles in a more systematic way.

Conclusion

 The need of today is to foster development but not at the cost of mankind. Thus, there is an urgent need to promote green 
nanotechnology for human and environmental sustainability. The development and commercialization of viable green nanotech-
nologies	is	difficult	and	require	concerted	effort	from	the	researchers,	government	and	other	stakeholders.	The	development	of	this	
environmentally friendly technology can go a long way in accelerating human welfare.
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