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Abstract
 Celiac disease (CD) is an autoimmune enteropathy that affects 1% of most populations. Genetic, immunological and 
environmental factors (the intake of gluten) participate in the establishment and development of the disease. Cells and cytokines 
make a network of interactions leading to intestinal inflammatory process. IFN-γ is the most potent inducer of transglutaminasa2 
(TG2) expressions, acts synergistically with TNF-α, and triggers the upregulation of HLA expression, the secretion of tissue-dam-
aging Metalloproteinases (MMPs) from fibroblasts, the heightened cytotoxicity of Intraepithelial Lymphocytes (IELs) against en-
terocytes with increased apoptosis and villous flattening. IL-12 and IL-18 have an important suppressive effect on the induction 
of antigen-specific tolerance and provoke a more vigorous response on challenge. Upregulation of IL-15 expression by epithelial 
cells and Dendritic Cells (DCs) in the lamina propria seems to contribute to alter signalling properties of the CD8+ intraepithelial 
lymphocytes and provokes the resistance of human T cells to the suppression by regulatory T cells. IL-15 and IL-21 might also act 
in concert to disrupt local mechanisms of immune tolerance. Increased expressions of several Th17 related cytokines in patients 
with active CD have been demonstrated. IL-10 acts by interfering with antigen presentation and induces hyporesponsive in gliadin 
specific T cells. TGF-β1 expression increased have been observed in the lamina propria of children with intestinal villous atrophy, 
which appoint its importance in the pathogenesis of CD. In this disease appreciated alteration of immune regulation with predomi-
nance of the Th1 and Th17 phenotype cytokines. The profile of mucosal effector cytokines differs between refractory CD and active 
CD; however, maintain and worsen the inflammatory process. Immune dysregulation, loss of tolerance, increase of pro-inflamma-
tory cytokines and non-suppression of the inflammatory response despite the presence of counter-regulatory mechanisms constitute 
relevant events in CD.
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Introduction

 Celiac Disease (CD) or gluten-sensitive enteropathy affects 1% of most populations and is traditionally regarded as a 
childhood disease; however, researchers reveal high incidence and prevalence in adulthood[1]. This disease is considered more 
prevalent in women due to increased use of health services when compared with men[2]. HLA-linked genes are relevant to CD. HLA 
haplotypes, DQ2/DQ8, are more frequent in female than in male CD patients[3]. HLA-DQ2.5 (DQA1*05, DQB1*02) is expressed 
about 90% of CD patients whereas most of the remaining patients express HLA-DQ8 (DQA1*03, DQB1*03:02) or HLA-DQ2.2 
(A1*02:01, DQB1*02:02)[4]. In DQ2 negative patients, the IL6 -174GG genotype (homozygous) may be an additional risk marker 
for CD, represented a susceptibility factor for the disease when TNF-308A is negative[5]. The genetic differences present worldwide 
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are not fully understood[6]. Researchers have report an increased 
prevalence of CD among First-Degree Relatives (FDRs) of celi-
ac patients[7,8].
 European Society of Pediatric Gastroenterology, Hepa-
tology and Nutrition Criteria (ESPGHAN) distinguish three 
different forms of CD: latent or potential form, the silent form 
(asymptomatic) and the symptomatic form. The first form is de-
fined by the presence of anti-celiac antibodies, the second by 
the presence of anti-celiac antibodies and villous atrophy of the 
small intestine and the third by the presence of anti-celiac anti-
bodies, villous atrophy and clinical symptoms[9]. 
 Predisposition to celiac disease is believed to depend 
on multiple genetic, immunological and environmental factors 
(the intake of gluten)[10](Figure 1). The genetic condition and 
abnormal immune response to dietary gluten is crucial for the 
development of CD. The main source of gluten comes from ce-
reals, especially wheat. Represents 80% of wheat proteins and is 
composed of gliadin and glutenin. Authors have demonstrated 
the existence of immunogenic and toxic gliadin peptides[11-14]. In-
vestigation indicates that α-gliadin (57–73), γ-gliadin (139–153) 
and ω-gliadin (102–118) are the most active gluten peptides in 
DQ2+ celiac patients[15]. CD is an autoimmune enteropathy that 
results of a type IV hypersensitivity reaction mediated by anti-
gen-specific effector T cells. This reaction takes some time to 
develop and gliadin antigen is absorbed by the gut and triggers 
the response. This type of immune reaction causes villous atro-
phy in small bowel and malabsorption[16-18]. 

Figure 1: Factors Involved in the Establishment and Development of 
Celiac Disease

 The “celiac iceberg” comprising potential or latent, si-
lent and symptomatic celiac disease. In the first form the mucosa 
is normal; in the last two the mucus is injured[19]. CD can present 
with gastrointestinal or extraintestinal manifestations (e.g., mal-
absorption or Duhring’s dermatitis herpetiformis)[20]. Undiag-
nosed CD patients cannot receive opportune treatment, and will 
have a probability elevated for developing of malignant diseases 
and secondary autoimmune disorders[19]. However, the small in-
testinal inflammation observed in CD regresses after elimination 
of gluten-containing foods, leading to the recovery of the struc-
ture and function of the mucosa which reveal the harmful effects 
of the gliadin in susceptible patients and the importance of a diet 
free of gluten[20].
 Life-threatening complications, although relatively 
rare, can include the development of Refractory CD (RCD) and 
Enteropathy-Associated T cell Lymphomas (EATLs)[16-18]. RCD 
has been subdivided into two subgroups according to the normal 

(Type I or RCD I) or abnormal (Type II or RCD II) phenotype of 
intraepithelial lymphocytes. RCD II is considered as a low-grade 
intraepithelial lymphoma and has a very poor prognosis[21].    
 Investigators had demonstrated that the Iron-deficien-
cy anemia is a common extraintestinal manifestation of celiac 
disease. In these patients with positive celiac disease serology 
the biopsy should be recommended[22]. The CD has been linked 
to: type 1 diabetes[23], sepsis[24], Systemic Lupus Erythematosus 
(SLE)[25] among others[26-28]. Authors appoint that skin diseases 
associated with CD can be classified into: proved association, 
Improvement in skin disease by gluten free-diet or/and presence 
of serologic markers in several data and Fortuitous associa-
tion[29].
 Over time and due to the global problems of CD, re-
searchers have developed various ways to avoid the adverse ef-
fects of gliadin, such as: genetically modified wheat cultivars, 
transamidated gliadins that revert the inflammatory phenotype 
by an anti-inflammatory in the gliadin-inducible immune re-
sponse and a desensitizing vaccine (NexVax2) that have three 
dominant gluten peptides and induces tolerogenic response in 
CD patients[30,31]. Also, researchers have demonstrated that an-
ti-wheat gliadin IgY antibody produced in their study has proved 
to inhibit absorption of gliadin and gliadin-induced inflammato-
ry process in Caco2 cell culture model of CD. Anti-gliadin IgY 
has a therapeutic potential to be used to treat CD[32].
 For many years, studies have been conducted involving 
the subset of T cells and cytokines in different physiological and 
pathological clinical entities[33-39]. In this review we will empha-
size the importance of the immune response and the participa-
tion of cells, pro-inflammatory and anti- inflammatory cytokines 
in the small intestine in patients with CD. We believe that regu-
lating proteins form a network of events that amplify the damage 
the intestine and and they could be used as a therapeutic target 
for disease control.

Cells, Cytokines and Other Factors Participating in the Im-
mune Response
 Celiac disease results from innate and adaptive immune 
system dysregulation. Activation of the adaptive immune sys-
tem implies that gliadin (the toxic component of gluten) cross 
the intestinal epithelium. It has been hypothesized that increased 
intestinal permeability is an early event in CD pathogenesis[40]. 
Natives Gluten peptides are deaminated by enzyme tissue Trans-
glutaminase (tTG) and bind HLA-DQ2 and HLA-DQ8 mole-
cules. Deamidated gluten proteins have enhanced affinity for the 
HLA-DQ heterodimer of antigen-presenting cells. These cells 
activate helper T cells and produce a T-helper type 1 response 
in the mucosa of celiac patients. It is triggered an inflammato-
ry reaction with activation of macrophages, cytotoxic T cells 
and plasma cells among other cells. Proinflammatory cytokines 
secreted by different cellular types are involved in the ampli-
fication of the immune response and involvement of the small 
intestine. These events cause disruption of the mucosa, matrix 
remodeling, cell death, the secretion of anti-gliadin and anti-tTG 
antibodies[41](Figure 2). Researches appoint that some gluten 
peptides efficiently elicit inflammatory T-cell responses whereas 
others do not. The explanation could be: (a) resistance to proteo-
lytic degradation, (b) substrate affinity to TG2 (c) specificity to 
bind HLA molecules[42].
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Figure 2: Network of Cytokines in CD: Enterocytes and Lamina Propria of Small Intestine 

• Natives gluten peptides are deaminated by enzyme tissue Transglutaminase (tTG) and bind HLA-DQ2 and HLA-DQ8 molecules. Antigen-pre-
senting cells activate helper T cells and trigger an inflammatory reaction with activation of macrophages, cytotoxic T cells and plasma cells among 
others . Proinflammatory cytokines secreted by different cellular types are involved in the amplification of the immune response and involvement 
of the small intestine. These events cause disruption of the mucosa, matrix remodeling, cell death and the secretion of anti-gliadin and anti- tTG 
antibodies. 
• Th1 cells are abundant in the lamina propria and responsible for the maintenance of a suitable environment for antibody production at the duo-
denal mucosa and for the cytotoxic activity of IELs in untreated CD patients. Increased numbers of TCRγδ+ IELs have also been observed in the 
small intestinal mucosa of CD patients. A pA2 gliadin peptide activates mucosa infiltrating CD8+ T cells in the context of HLA class I restriction, 
suggesting a role for these cells in CD epithelial cell death. 
• NKT cells immunoregulatory deficiency may play an important role in loss of immunological tolerance. The suppressor activity of Tregs is sig-
nificantly impaired in CD. A defect in Tregs function could play a role in the pathogenesis of CD and in CD-associated autoimmunity. Regulatory 
properties of these cells are influenced through the signals received from the tissue environment. 
• The increase of IL-2 and sIL-2R levels suggests indirectly T-cell activation. IFN-γ is upregulated in the mucosa of untreated CD patients and 
returns to normal levels after gluten is withdrawn from the diet. 
• Elevated levels of IL-12 and IL-18 have an important suppressive effect on the induction of antigen-specific tolerance. IL-15 augments the pro-
duction of granzyme b by IELs and IFN-γ by IELs and Th1 cells; enhances the expression of the activating NGK2D receptor on IELs; induces 
the NKG2D ligand, MHC class I chain related ligand A (MICA), on epithelial cells. IL-15 plays a crucial role in the maturation and activation of 
dendritic cells and macrophages.
• Increased expression of several Th17-related cytokines have been demonstrated in patients with active CD. IL-10 acts by interfering with antigen 
presentation and provokes the induction of hyporesponsive in gliadin specific T cells. TGF- β is inhibited by IL-15. This effect might promote and 
keep the intestinal inflammation in CD. Three important chemokines, CXCL9 (Mig), CXCL10 (IP-10) and CXCL11 (I-TAC), bind to different do-
mains of CXCR3 and differentially activate the receptor , each inducing distinct biological effects on receptor internalization and the chemotaxis. 
• The incremented production of immunomodulatory cytokines might be due to an inefficient attempt of regulating the mucosal inflammation. 
Synergistic, antagonistic, redundant and pleiotropic biological effects of the cytokines can modify immuno-pathological consequences.
•  CD is characterized by an impressive clinical heterogeneity, ranging from totally asymptomatic to fully symptomatic forms. Also, immunological 
events related to cytokines are complex because there are many participants and determinants factors. It considers that there are immuno histolog-
ical differences among the patients related or not with the clinic. 
• IEL, intraepithelial lymphocyte; LP, lamina propria; MMPs, metalloproteinases 



Function of the Cells
 Many cells take place in the immune response in CD. 
Neutrophils and lymphocytes are the cells that play a major role 
in inflammatory processes. Neutrophil-to-Lymphocyte Ratio 
(NLR) was introduced as a useful index for diagnosis or prog-
nosis of different diseases[43]. NLR might be used as a sensitive 
laboratory index in screening and diagnosis of CD[44]. The search 
for new methods of laboratory of high sensitivity and specificity 
is of great importance since it is estimated that up to 90% of 
patients are undiagnosed due to subclinical presentations[45].
 DCs as Antigen Presenting Cells (APCs) participate in 
the presentation of gliadin peptides to mucosal CD4+ T cells 
and they may promote the persistence of the inflammatory re-
sponse by interacting with lamina propria T cells. Deregulation 
of DC function, either as a primary effect of gene mutations or 
as a consequence of defective integration with environmental 
cues, may result in intestinal disease[46]. Rapid accumulation of 
CD14+CD11c+ DCs is specific to CD and precedes changes in 
mucosal architecture, indicating that this DC subset may be di-
rectly involved in the immunopathology of the disease[47]. Others 
appoint a significant reduction of the absolute number of DC, 
mainly the plasmacytoid subset, both in untreated and treated 
CD patients[48]. Distinct subpopulations of APCs in celiac dis-
ease may exert different functions in the pathogenesis[49]. 
 The CD4+ T cells play an important role in tissue in-
jury[50] and in lamina propria predominates the phenotype Th1 
with production of cytokines in response to gluten stimula-
tion[51]. Researches[52] showed that patients with CD may fail to 
regulate T cell response to gluten because of an impaired ca-
pacity for extra-thymic T cell receptor gene rearrangement. Th1 
cells are abundant in the LP and responsible for the maintenance 
of a suitable environment for antibody production at the duode-
nal mucosa and for the cytotoxic activity of IELs in untreated 
CD patients[53]. Authors indicate that the profile of mucosal ef-
fector cytokines differs between RCD and ACD. They reported 
increase of IFN-γ, IL-17A and IL-21 transcript in ACD as well 
as increase of IL-6, TNF-α and IL-17A transcript in RCD. No 
significant increment in IL-15 transcripts was observed in both 
ACD and RCD, whereas IL-15 protein was increased in active 
CD[54]. 
 In humans and mice, TCRγδ+ T cells are preferentially 
located in epithelia of various organs, and they constitute a sub-
stantial fraction of intestinal Intraepithelial Lymphocytes (IELs)
[55,56]. It has been proposed that TCRγδ+ T cells bridge innate and 
adaptive immune responses[57]. In the intestinal mucosa, these 
cells play a vital role in the maintenance of epithelial integri-
ty and repair through the production of cytokines and growth 
factors[58-61]. Increased numbers of TCRγδ+ IELs have also been 
observed in the small intestinal mucosa of CD patients[62-65]. An 
increase of this IEL subset has been observed in all stages of 
disease: Latent CD (LCD) and Active CD (ACD) or those on a 
Gluten-Free Diet (GFD) and in some first-degree relatives of CD 
patients with HLA-DQ2[66-68].
 Investigation provides evidence that human small intes-
tinal CD8+TCRγδ+ IELs have attributes of Tregs in the context 
of CD. It found that CD8-TCRγδ+ IELs, which are also increased 
in individuals on GFD, have suppressive capabilities, although 
these are much weaker than those of CD8+TCRγδ+ IELs[69]. For 
others, a pronounced epithelial reaction in active CD with all 
three major activated IEL subsets, such as: γδ+ T cells, CD4+αβ 

T cells and CD8+αβ T cells. Two groups are considered the 
largest producers of regulating proteins such as: CD4+αβ Tcells 
(TNF-α) and CD8+αβ Tcells (IFN-γ, IL-10, TNF-α, TGF-β)[70].
 Interaction of the activating NK cell receptors, NKG2D 
or the heterodimer CD94/NKG2C, expressed by CD8+TCRαβ+ 
IELs, with their ligands MICA/B and HLA-E on enterocytes, 
respectively, results in the release of IFN-γ and the contents of 
cytotoxic granules (perforin and granzyme B) that cause cytoly-
sis of enterocytes[71-73]. With respect to invariant NK T cells, re-
searchers have demonstrated that are systemically deficient and 
with defective cytokines production in CD. These observations 
suggest that NK T cells immunoregulatory deficiency may play 
an important role in loss of immunological tolerance in CD[74].
 Regulatory T cells (Tregs) have an important role in 
CD. Recent studies show increased numbers of circulating and 
mucosal CD4+Foxp3+ cells in individuals with Active Celiac 
Disease (ACD), as compared to those on a GFD[75]. However, 
the suppressor activity of Tregs was significantly impaired in 
CD patients. These results suggest that a defect in Tregs function 
could play a role in the pathogenesis of CD and in CD-associat-
ed autoimmunity[76].
 When Th2 cells recognize antigen on B cells, helper T 
cells activate these cells to proliferate and differentiate into an-
tibody- producing plasma cells. Investigators found that enzyme 
Transglutaminase 2 (TG2)-specific plasma cells were highly 
expanded in patients with active CD, representing on average 
10% of Antibody-Secreting Cells (ASCs) within the duodenal 
mucosa. These autoantibodies presented limited somatic hyper-
mutation in intestinal lesions of the ill patients[77].
 Anti-TG2 antibodies are a key feature of CD. IgA an-
ti-TG2 antibodies are useful for diagnostic purposes because 
they have sensitivity and specificity close to 100%[78]. The auto-
antibodies that are commonly related to CD are IgA anti-tTG2 
and the Anti-Endomysium (EMA). These last antibodies have 
been reported in some studies, to decline or disappear in associ-
ation with a clinical and/or histological response to a gluten-free 
diet[9]. However, there are reports of patients with positive his-
tology on duodenal biopsy samples but negativity of anti-TG2 
antibodies. These patients have been diagnosed as Seronegative 
Celiac Disease (SNCD)[79]. Seronegative (EMA or tTG) CD oc-
curs in less than 10% of celiacs, particularly in those with lesser 
degrees of villous atrophy[9].

Cytokines and their participation in the immune response
 Cell participation and secretion of regulatory proteins 
or cytokines establish a network of interactions leading to in-
flammatory consequences that could result in clinical manifes-
tations. These regulating proteins have synergistic, antagonistic, 
redundant and pleiotropic biological effects that can affect the 
immune response in CD also occur in others diseases. There are 
cytokines pro-inflammatory and anti-inflammatory. These pro-
teins can be regulated for the control of the immune system and 
the maintenance of homeostasis[37].
 In CD some cytokines more that others have been im-
portant mediators to amplified the immune response. Knowing 
the biological actions of cytokines, serum concentrations and 
their tissue expression could establish the inherent changes 
to this disease. Also, The balance between STAT-4/T-bet and 
STAT-6/GATA-3 thus seems to dictate the fate of T cell polariza-
tion during the immune response[80].
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Thymic Stromal Lymphopoietin (TSLP)
 This regulating protein is constitutively expressed by 
epithelial cells, is very important in the preservation of immune 
tolerance in the gut. Authors have demonstrated reduced mu-
cosal TSLP expression may contribute to the upregulation of 
T-cell-derived cytokines and myofibroblast-released matrix-de-
grading enzymes. This deficiency may contribute to intestinal 
damage in refractory and untreated CD. Also, they appoint that 
is necessary to verify whether the therapeutic restoration of 
TSLP might be useful, especially in refractory patients with CD, 
who no longer respond to GFD[81].

Interleukin-2
 Interleukin-2 (IL-2) is produced by Th0, Th1 and some 
CTL. It stimulates growth of B, T and NK cells. The serum lev-
els of IL-2, soluble IL-2 receptor (sIL-2R), and Antibodies An-
ti-Gliadin (AGA) were significantly increased in celiac patients. 
The increase of IL-2 and sIL-2R levels suggests indirectly T-cell 
activation in these patients[82].
 sIL-2R and IL-6 levels have a good correlation with 
CD activity and can be used as reliable markers for detecting 
minimal transgression from GFD[83]. Serum sIL-2R levels in 
patients with celiac disease reflect specific immunological ac-
tivation in response to gluten ingestion. Measurement of serum 
sIL-2R may therefore be useful in the assessment of response to 
treatment in patients with celiac disease[84].

Interleukin-6
 Interleukin-6 (IL-6) is secreted by Th2 cells, B cells, 
monocytes, macrophages, endothelial, epithelial, fibroblast 
cells. It is an important inductor of the acute-phase response. IL-
6, together with other cytokines as IL-1 and TNF-α, has effect 
on hepatocytes, Bone-marrow, endothelium, hypothalamus, fat, 
muscles and DCs[85].
 Researches had demonstrated that DQ2 negative CD 
patients show an increased frequency of genotypes associated 
to IL6 high production[5]. The functional-174G/C IL6 polymor-
phism seems to influence CD susceptibility in girls[86]. Authors[54] 
had observed a significant increment of IL-6 in RCD but no in 
ACD. The mechanisms of this difference are not fully under-
stood.

Interferon-γ and Tumoral Necrosis Factor-α
 IFN-γ is a proinflammatory cytokine secreted by Th1, 
CTL, NK cells. Study revealed that the numbers of IFN-γ-pro-
ducing cells in the peripheral blood was increased significantly 
in children with untreated CD and after gluten challenge com-
pared with healthy controls[87]. 
 Neutralization of IFN-γ has been shown to prevent 
“gluten”-induced mucosal damage, at least in biopsies of CD 
mucosa maintained in organ culture[88]. The transcription factor 
T-bet, which directs Th1 cell–lineage (secretor of IFN-γ), is up-
regulated in the mucosa of untreated CD patients and returns to 
normal levels after gluten is withdrawn from the diet[80].
 IFN-γ triggers the upregulation of HLA expression 
facilitating T cell priming and expansion, the secretion of tis-
sue-damaging Metalloproteinases (MMPs) from fibroblasts, 
the heightened cytotoxicity of IELs against enterocytes with in-
creased enterocyte apoptosis and villous flattening. CD4+ glia-
din-reactive cells can differentiate into Th1, Th17, Tr1 and Foxp 

3 phenotypes in the presence of cytokines as IFN-γ, TGF-β+IL-6, 
IL-10 and TGF-β+IL-2 respectively[89]. The surrounding environ-
ment and other factors set the appropriate way. 
 TNF-α is cytokine produced by Th1, some Th2 and 
some CTL phenotypes. It induces nitric oxide production and 
activates microvascular endothelium among other biological 
actions. Researchers found that TNF-α acts synergistically with 
IFN-γ which is the most potent inducer of TG2 expression[90]. 
TG2 plays a critical role in the pathogenesis of celiac disease 
(CD), because it is able to deamidate glutamine residues present 
in toxic proteins from wheat and related cereals[91].
 Probiotic intervention with Bifidobacterium breve 
strains has shown a positive effect on decreasing the produc-
tion of pro-inflammatory cytokine (TNF-α) in child with CD 
on GFD. Gut microbiota dysbiosis play an important role in the 
pathogenesis of CD. Dysbiosis may contribute to disrupting the 
immune homeostasis and gut integrity, promoting CD onset and 
aggravating the pathological process[92].

Interleukin-12
 IL-12 is produced by antigen-presenting cells such as 
B, macrophages and DCs. It permits the differentiation of CD+ T 
cells into Th1 but suppresses Th2[93]. Authors have demonstrated 
that IL-12p70 were elevated significantly in children with celiac 
disease compared to controls. A prolonged systemic inflamma-
tion may contribute to long-term with complications in untreated 
celiac disease. After gluten-free diet, levels of IL-12 decreased 
significantly[94].
 Elevated levels of IL-12 and IL-18 have an important 
suppressive effect on the induction of antigen-specific tolerance 
and provoke a more vigorous response on challenge. By their bi-
ological actions augment IFN-γ production, as well as increasing 
activation of antigen-presenting dendritic cells[95].

Interleukin-15 and interleukin-21
 IL-15 is a cytokine synthesized by mononuclear phago-
cytes and other cells. It has important functions for growth pro-
motion and survival for T, NK cells and provides activating and 
survival signals to CTL and is thought to indirectly modulate 
CD4+ T cell responses by acting on APC[96,97]. 
 In CD upregulation of IL-15 expression by epithelial 
cells and DCs in the lamina propria seems to contribute to al-
ter signaling properties of the CD8+ intraepithelial lymphocytes 
population. Also, induces increased expression of ligands on in-
testinal epithelial cells [for example, Major Histocompatibility 
Complex (MHC) class I chain-related protein (MIC)] that are 
targets of the cytotoxic, TCR-independent NK-like cells. IL-15 
produced by DCs in the CD mucosa also might be important in 
the adaptive T cell response to “gluten.”[71,98]. Another study also 
has shown increased levels of IL-15 in the intestinal epithelium 
and lamina propria of patients with untreated CD compared to 
patients in remission and healthy controls[99]. It has been shown 
that IL-15 can synergize with IL-21, a cytokine produced by 
CD4+ T, NK T cells as well as by human intestinal CD3+ Lam-
ina Propria T Lymphocytes (LPLs), that stimulates IFN-γ pro-
duction and cytolytic activity of CD8+ T cells and NK cells[100]. 
 The critical role of IL-15 in intestinal epithelial cell 
death is induced by NKG2D (activating NK receptors)-express-
ing IELs. IL-15 and IL-21 might also act in concert to disrupt 
local mechanisms of immune tolerance. These cytokines seem to 
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differentially modulate some aspects of both innate and adaptive 
immunity, such as dendritic cell maturation and T cell apoptosis 
At least in some stages of the inflammatory process, IL-15 and 
IL-21 can exert opposing effects on the gluten-driven immune 
response[101,102].
 IL-15 augments the production of granzyme B by IELs 
and IFN-γ by IELs and Th1 cells; enhances the expression of 
the activating NGK2D receptor on IELs; induces the NKG2D 
ligand, MHC class I chain related ligand A (MICA), on epithelial 
cells[103]. IL-15 is overexpressed in the intestine of patients with 
CD, but does not impair the generation of functional Tregs but 
renders human T cells are resistant to Treg suppression[104].
 Interleukin 15 (IL15) contributes to the pathogenesis of 
celiac disease. In mice given food antigen, cooperation between 
IL15 and CD4+ T cells is necessary and sufficient to activate 
CD8+ T cells and damage the small intestine[105]. IL-15 sensi-
tivity may provide attractive new targets for the treatment and/
or prevention of this disease and potentially other autoimmune 
disorders[106].

Interleukin-17
 IL-17, a cytokine pro-inflammatory, is secreted by Th 
17 cells. Th17 cells cytokines are involved in several autoim-
mune or inflammatory diseases[107]. Authors[108] implicated the 
Th17 immune response in CD pathogenesis, evidenced by the 
increased expression of several Th17-related cytokines in pa-
tients with active CD. Despite of the presence of an endogenous 
counter-regulatory mechanism in the intestinal mucosa of celiac 
patients, the inflammatory response is not suppressed. For some 
the role of Th17 phenotype in CD pathogenesis is ambiguous[89]. 
For others, predominate in both RCD and ACD and the secreted 
cytokines by that phenotype start and amplified the inflammato-
ry process[54]. Further studies are necessary to clarify the poten-
tial of Th17 cells as therapeutic.

Interleukin-18
 IL-18, a pro-inflammatory member of the IL-1 family, 
has been associated with autoimmunity and allergic disease. IL-
18 has been implicated in the loss of oral tolerance to mucosal 
antigens in many inflammatory disorders. This regulating pro-
tein in combination with IL-12 may be able to prevent the induc-
tion of oral tolerance to ovalbumin (OVA) in BALB/c mice. The 
possible mechanisms involved could be: effects on antigen-pre-
senting dendritic cells, antigen-responding lymphocytes and/or 
the surrounding tissues. This defect in immunological tolerance 
is often observed in inflammatory disorders of the gut such as 
CD among others. The CD80 co-stimulatory molecule on den-
dritic cells was also increased by this combination of cytokines. 
This demonstrates that tolerance to mucosal antigens may be 
broken in vivo[95]. 

Interleukin-10
 IL-10 is a cytokine immunosuppressive produced by 
Th0, Th1 and Th2 lymphocytes, TCD8+ cells, monocytes, kera-
tinocytes and activated B cells. The production of IL-10 (along 
with IFN-γ) in the duodenum during ACD has been reported 
elsewhere[70], indicating that the post-challenge IL-10 produc-
tion may be part of a normal celiac response.
 IL-10 secreting, type 1 regulatory (TR1) CD4+T clones 
were described in the LP of CD patients on a GFD. These T 

cells were gliadin specific and could suppress the proliferation 
of pathogenic CD4+ Th0 cells[109].
 Data provide the first evidence for an immunoregula-
tory effect of IL-10 on gliadin dependent T cell activation in 
treated and untreated CD mucosa. IL-10 acts by interfering with 
antigen presentation and provokes the induction of hyporespon-
sive in gliadin specific T cells[110].

Transforming Growth Factor-β
 TGF-β modulates the functions of T lymphocytes and 
macrophages[93]. This cytokine have an effect inhibitor of Th1 
lymphocytes. TGF-β is inhibited by IL-15. This effect might 
promote and keep the intestinal inflammation in celiac disease. 
IL-15 is good therapeutic target in inflammatory diseases. 
 Researchers have shown that the Transforming Growth 
Factor-β1 (TGF-β1) expression was increased in the lamina pro-
pria of children with intestinal villous atrophy, which appoint 
its importance in the pathogenesis of CD. TGF-β1 is obligatory 
for the generation of both Treg and Th17 cells with additional 
cytokines as IL-6 and IL-21[112].
 Other reports appoint that the percentage of samples 
expressing TGF-β mRNA from ACD patients was higher than 
from controls. The same happened with IL-2, (IFN)-γ, TNF-β, 
IL-10, IL-1β, TNF-α. Cytokine levels may to be relevant mark-
ers of disease activity[113]. 

Chemokines
 Chemokines belong to a large family of proteins called 
chemotactic cytokines. They can mediate the constitutive re-
cruitment of leukocytes from the blood into tissues[114].
 Three chemokines, CXCL9 (Mig), CXCL10 (IP-10) 
and CXCL11 (I-TAC), bind to different domains of CXCR3 
and differentially activate the receptor each inducing distinct bi-
ological effects on receptor internalization and chemotaxis[115]. 
Besides in the intestinal epithelium, CXCR3 is expressed on im-
mune system cells, such as: activated T cells[116], γδ T cells[117], 
eosinophils[118], B cells[119], plasma cells[120] and plasmacytoid 
dendritic cells[121]. CXCR3 is expressed more abundantly at the 
intestinal epithelium and lamina propria in patients with CD than 
in non-CD individuals[122]. A study reported that the chemokine 
receptor CXCR3 serves as a receptor for specific gliadin pep-
tides that cause zonulin release and subsequent increase in intes-
tinal permeability. The authors[123] appoint that gliadin-induced 
IL-8(CXCL8) production was CXCR3-dependent gliadin only 
in CD. This chemokine is a potent neutrophil-activating and che-
moattractant and phagocytes cells as neutrophils are involved in 
the early immunological changes following gliadin exposure[124]. 
This indicates that the stimulus of the immune system caused by 
gluten peptides in susceptible patients, before and after antigen 
processing and subsequent presentation to T lymphocytes mobi-
lize many cells to the lamina propria to archive the amplification 
and exacerbation of the response established important patho-
logical consequences. 
 To conclude, in CD should take into consideration the 
following events: immune dysregulation, loss of tolerance, in-
creased pro-inflammatory cytokines and non- suppression of the 
inflammatory response despite the presence of counter-regula-
tory mechanisms in the intestinal mucosa of celiac patients. In 
another order of ideas and for reflection, the existence of classi-
fications as Marsh, Oberhuber and others to describe the types of 
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intestinal lesions complicate the assessment of immunological 
events that take place in situ in patients with CD[125-127]. 
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