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Abstract

 Microcirculatory monitoring revealed great impact in predicting the severity 
of organ dysfunction and the outcome of critically ill patients. Clinicians are trying to 
introduce this technology in the clinical practice, as a supplement to routine surveil-
lance; unfortunately, despite decades of researches, there are still unsolved questions 
and practical limitations to this. The purpose of this article is to summarize the state of 
the art regarding microcirculation through 6 traditional questions (5 “W” and 1 “H”), 
but also to highlight the open issues and the current restrictions for the use of the device 
as routine.
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Introduction

 The microcirculation is a complex network of capillaries, venules and arterioles. All the vessels characterized by a diameter 
smaller than 100 μm are part of the microcirculation. Several functions have been attributed to it, included oxygen delivery, removal 
of metabolites and nutrient’s supply to tissues. Microcirculatory perfusion is controlled by myogenic, metabolic and neurohumoral 
mechanisms and several studies have shown that the endothelial cell works as active determinant of this autoregulation, through 
cell- to-cell interactions and autocrine and paracrine signaling[1-4].
 The regulatory dysfunction of microcirculation is specifically involved in the systemic response to inflammation and infec-
tion, and it can lead to organ dysfunction and multiorgan failure. Microcirculatory monitoring have revealed to be a strong predictor 
of the outcome of critical care patients with severe sepsis and septic shock: presence of microvascular alterations and heterogeneity, 
failure in improving microcirculatory perfusion with fluid resuscitation and vasoactive drugs have been all related to lower survival 
and higher severity of organ dysfunction[1,5-7].
 Despite years of clinical and experimental studies, there are still unsolved questions about the pathophysiology underlying 
this deregulation and there is also technical limitation to the bedside use of the technique as complement to macrohemodynamic 
monitoring. However microcirculatory assessment could be strongly instructive in all those situations where the optimal tissue’s 
perfusion represents the cornerstone of the treatment. We believe that 5 Ws and 1 H is a perfect formula for getting the complete 
state of art and to understand the progresses of microcirculatory investigation.

“How”: Technology Underlying Microvascular Monitoring
 For a long time microvascular monitoring has been limited to semi-transparent tissues allowing only experimental or ex 
vivo studies, preventing it to the clinical setting. 
 Slaaf et al, introduced the first real bedside monitoring with the technology of the Orthogonal Polarization Spectral imaging 
(OPS)[8]. Therefore, OPS have been experimented in different settings of severe illness and emergency medicine[9-12]. SDF imaging 
(Sidestream Dark Field- introduced by Goedhart and colleagues) first, and IDF (Incident Dark Field) Illumination then, made further 
improvements as they obtained higher optical resolution and they increased the percentage of success in acquisition and therefore 
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the possibility to analyze the records collected[13,14].
 Cytocam® (Braedius Medical, Huizen, The Netherlands) is the most recent technology introduced in commerce and it is 
based on IDF illumination; if compared to Microscan® (Micro Vision Medical, Amsterdam, The Netherlands) that is based on SDF 
imaging, IDF illumination seems to offer advantages for the operator, derived from the introduction of digital signal, the reduction 
in weight of the device (better handling of the probe and lower pressure artifacts) and the higher optical resolution. Some validation 
studies are already available in literature and they report superiority of this novel video-microscope on the previous devices[15-17].
Core of the technology for vessel’s detection is an incoming ring light (LEDs light) characterized by a specific wavelength of 530 
nm. 530 nm represents the isosbestic point of absorption spectra of the hemoglobin contained in red blood cells (RBC) so that RBC 
impressed by the light are visualized as flowing granules that indirectly highlight just those vessels that are perfused, hiding vessels 
that are not perfused at all[10-13].

“How” to Capture Good Quality Videos?
 As nicely described by De Backer et al, saliva, fresh blood and contusions are often the main responsibles for an inadequate 
visualization of vessels; for a good quality of records, all secretions should be carefully removed using tissues or gauzes and high 
attention should be taken to optimize focus, illumination and contrast (Figure 1)[18]. Other disturbances can derive from pressure’s 
and motion’s artifacts: pressure artifacts can be focal or global, and they are determined by excessive pressure applied on the mucosa 
that occludes RBC flow; they can be detected by the observation of large venules, where impaired flow of venules is suggestive of 
excessive pressure; motion’s artifacts are more frequent in awake patients even more in confused and agitated ones, because they 
are unable to remain steady for long and to cooperate with the observer. A firm but gentle grip of the probe on patient’s chin usually 
facilitates stabilization of the image[18,19].

Figure 1: Examples of quality of capture. The image on the left represents a good quality video, while the middle and right ones respectively 
represent examples of incorrect area of evaluation and of artifacts derived from saliva bubbles and pressure artifacts.

“How” to Analyze Videos?
 As Bezemer R et al reported, the off-line analysis is the gold standard for this technology[20]. All capillaries have to be man-
ually detected and drew, then blood flow is individually characterized. Semi-automated software’s are available in commerce. AVA 
(Automated Vascular Analysis) is the most used software package worldwide, it facilitates the operator in some of the main steps of 
off-line analysis, but nevertheless it remains time-consuming and partially operator-dependent, so we are far from a real resolution 
of the limits of this methodology. We should aim to reach a complete automatization of the procedure both to reduce inter-operator 
dependency and to introduce microcirculatory monitoring in the daily clinical practice in the setting of critical care patients where 
an evaluation of tissue’s perfusion is undoubtedly important[20].

“Who”: Importance of a Well-trained Observer
 As with many other devices introduced into clinical practice, such as Echocardiography and Transcranial Doppler, both 
video capture and off-line analysis of microcirculation require expertise and skills, and a well- trained observer is fundamental to 
obtain good-quality images, to avoid artifacts and to give the right meaning to the results. 
 A well-trained observer can easily recognize and avoid pressure and motion artifacts and he can therefore optimize the 
acquisition. The operator must also be skilled in the off-line evaluation of the principal parameters. As previously mentioned, in-
ter-operator deviation of the method could be completely deleted just when totally automated software will be available[19,21,22]. 
Massey MJ, Shapiro NI and colleagues have recently created a score of quality called “Microcirculation Image Quality Score” with 
the aim to rate image’s quality before off-line analysis and they have introduced 6 different features to control(illumination, duration, 
focus, content, stability and pressure), to assign the score of optimal, sub-optimal, or unacceptable quality of the record[21]. Further 
assessment of this score is mandatory, but it is unquestionable that we need a quality control to ensure high relevance studies[22]. 
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What”: Guide to Microcirculatory Parameters
 De Backer D, Ince C, et al. published the new roundtable Guidelines in 2007, in order to formulate a consensus statement 
on microvascular evaluation. These guidelines are still the main guidance for both acquisition and analysis of images[18]. 
 Participants of the round table were some of the principal experts in “microhemodynamic”. All of the experts agreed that 
a measure of vascular density, of perfusion of the vessels and of heterogeneity of flow should be always performed and registered. 
They decided that 20 μm in diameter was the right cut-off to divide small vessels (mostly capillaries) from medium and large vessels 
(20 - 100 μm). Vessels with a diameter smaller than 20 μm are the most physiologically active vessels for oxygen exchange. Medium 
and large vessels predominantly represent small venules and also rare arterioles[18,19]. 
 Measures of vessel density are TVD (Total Vessel Density) and De Backer Score; PVD (Perfused Vessel Density) instead 
is an estimate of functional capillary density (FCD). PVD is calculated by multiplying vessel density by the Proportion of Perfused 
Vessels (PPV). It is one of the most relevant variables, because it identifies and differentiates patterns of bad and good perfusion 
of small vessels: “no flow” and “intermittent flow” are identified as determinants of a poor oxygenation. Most of these indices are 
derived from the number of intersections of capillaries with the horizontal and the vertical arbitrary grid-lines and from the mea-
surement of the total capillary length of the surface[19,20]. 
 The Microcirculatory Flow Index (MFI) is a parameter of perfusion. In this case just one horizontal and one vertical line 
divide the image in 4 equal quadrants, in which the observer reports the predominant type of flow using an ordinal scale (0 for absent 
flow, 1 as intermittent flow, 2 for sluggish flow and 3 for normal). The average of the 4 quadrants is the final MFI[23,24]. Boerma, et 
al in their trials found a high intra- and inter-observer reproducibility of MFI[20,25].
 Heterogeneity of perfusion is another determinant of oxygen extraction efficacy. It is characterized by alternation of nor-
mally perfused areas and poorly perfused ones. When the distance among capillaries increases, those cells that are distant from 
capillaries find it difficult to exchange gas and metabolites, and a certain degree of cellular distress can appear as result of hypoxia. 
Therefore high heterogeneity of vascular distribution is generally less tolerated than a homogeneous but sluggish flow[18,19]. 5 spots 
of sublingual surface should be captured to assess vascular heterogeneity, and at least 3 of the 5 records should be analyzed. 

“Where” and “When”: Targets for Microvascular Examination
 Sublingual mucosa is the most common and standardized site for evaluation of microcirculation and Boerma’s study 
demonstrated that it is an excellent mirror of splanchnic vessels[25] Other sites of interest are small intestine (villi), colon (crypts), 
rectum (crypts), liver (sinuses) and gingival tissue: several studies have been performed, but they mostly involve ex vivo evaluation 
or experimental trials.
 A recent multicentre trial called “Micro SOAP study” showed a high prevalence of microvascular alteration in the critically 
ill patients. The study consisted in a one-shot evaluation of microcirculation of ICU patients. It involved 36 ICUs worldwide and it 
tried to correlate specific patterns of microcirculation with specific pathologies; an on-going monocentric study of Donati’s group 
is trying to characterize patterns of alterations starting from patient’s diagnosis, and also to follow the course of the pathology from 
the admission throughout all the ICU’s stay[26]. Sepsis and septic shock are the main field of application for microcirculatory assess-
ment[1,27-29]. 
 The new definition of sepsis proposed by Singer M, Angus DC et al, describes sepsis as “a life- threatening organ dysfunc-
tion caused by a dysregulated host response to infection”[30]. 
 Decades of studies demonstrated that in the pattern of distributive shocks like septic one, there is an activation of the 
cytokinesis cascade that causes derangement of the auto-regulatory mechanisms and of endothelial cells function, anomalous pro-
duction of nitric oxide and altered response of the circulation to vasoactive drugs. When this infection-induced derangement persists, 
it causes qualitative and quantitative alterations of microcirculation (reduction in total and perfused vessel density and increased 
heterogeneity of flow) that affect tissue perfusion and organ function[1,4,29]. 
 Further promising fields of application for microvascular monitoring have been studied: hypovolemic and hemorrhagic 
shock, cardiac failure and diabetes, organ perfusion in anaemia and hemodilution, multiorgan failure and organ failure related to 
polytrauma[31-34].
 The effects on microcirculation have also been reported for several drugs (catecholamine, nitroglycerin, recombinant 
activated protein C, beta-blockade), fluids (albumin, crystalloids, colloids and blood transfusion), and procedures (normobaric 
hyperoxia, ischemia-reperfusion syndrome, cardiac resynchronization and cardiac surgery) in the pattern of septic and non-septic 
patients[35-43]. 

“Why”: The Rationale behind Microcirculatory Monitoring
 Shoemaker’s “supranormal values” theory, River’s Early Goal Directed therapy and all subsequent studies have shown the 
importance of hemodynamic optimization as treatment’s target for septic and critically ill patients[44-48]. 
 However, the normalization of macrohemodynamic parameters, such as Cardiac Output (CO) and arterial pressure, is not 
a guarantee for good oxygen delivery and organ perfusion: there is often a mismatch between macro and microhemodinamic[49,50]. 
Even if there are some surrogates to assess the adequacy of the organ perfusion, as lactate, peripheral temperature and capillary refill, 
all of them are characterized by well-known limitations: blood lactates are the result of a balance among production, metabolism 
and excretion, and they do not represent a direct marker of anaerobic metabolism and poor tissue perfusion; the capillary refill time 
and peripheral temperature suffer from environmental factors, altered thermoregulatory mechanisms and vascular disorders. None 
of them gives us a true picture of organ perfusion, and moreover none of them is a precocious marker of inadequate treatment: in 
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these cases, the direct visualization of microcirculatory alterations, through direct monitoring at the patient’s bedside, may be an 
additional resource for clinicians to guide their treatment and to formulate a right prognosis for their patients. 

Conclusion

 Several years of researches demonstrated that microcirculation is important in the physiopathology of sepsis, septic shock 
and much other pathology. 
 Real time monitoring of microcirculation may represent an additional weapon for the diagnosis and a guide to treatment. 
Unfortunately, the technology is not yet ready to ensure that the instrument is versatile and quick enough to be routinely used in clin-
ical practice. The current limitations to a broad spectrum use of the device are: the necessity of specific expertise of the observer, the 
time-consuming procedure of analysis and moreover the lack of agreement upon the range of normal values for the main parameters 
in healthy people. Despite the difficulties, the increasing space given from literature is a clear sign of recognition and legitimation 
of this technique and a stimulation to find answers to the open questions through high-quality clinical and experimental trials.
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